Skip to main content
Log in

Analytical applications and effective properties of a second gradient isotropic elastic material model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Recently, the works by Toupin, Mindlin, Sokolowski and Germain have been developed following two research streams. In the first one, higher-order gradient continuum models were developed based on the Cauchy tetrahedron argument (see, e.g., dell’Isola and Seppecher in Comptes Rendus de l Academie de Sciences 17 Serie IIb: Mecanique, Physique, Chimie, Astronomie 321:303–308, 1995, Meccanica 32:33–52 1997, Zeitschrift fr Angewandte Mathematik und Physik 63(6):1119–1141, 2012). In the second one, the structure of higher-order gradient models is developed with a view to the applications. In particular in the model of linear isotropic solids proposed by Dell’Isola, Sciarra and Vidoli (DSV), the main constitutive equation is obtained for the case of second gradient models. This model introduces in addition to the two well-known Lame’s elastic constants five constitutive constants. The practical applications of this model remain in its infancy since the issue of determining the new moduli it introduces is not yet completely addressed. Also, analytical solutions of simple boundary value problems that can be helpful to grasp some of the physical foundations of this model are missing. This paper aims to address these two issues by providing the analytical solutions for two model problems, a spherical shell subjected to axisymmetric loading conditions and the circular bending of a beam in plane strain, both the beam and the shell obeying the DSV second gradient isotropic elastic model. The solution of the circular bending of a beam has served to grasp some of the physical soundness of the model. A framework based on homogenization under inhomogeneous boundary conditions is also suggested to determine the unknown constitutive constants, which are provided in the particular case of elastic porous heterogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J., Seppecher P., dellIsola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bammann D.J.: A model of crystal plasticity containing a natural length scale. Mater. Sci. Eng. A 30917310, 406–410 (2000)

    Google Scholar 

  3. Bammann D.J., Solanki K.N.: On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline materials. Int. J. Plast. 26(6), 775–793 (2010)

    Article  MATH  Google Scholar 

  4. Bennett T., Gitman I.M., Askes H.: Elasticity theories with higher-order gradients of inertia and stiffness for the modelling of wave dispersion in laminates. Int. J. Fract. 148, 185–193 (2003)

    Article  Google Scholar 

  5. Collina F., Caillerie D., Chambonb R.: Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. Int. J. Solids Struct. 46, 3927–3937 (2009)

    Article  Google Scholar 

  6. Borst R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1993)

    Article  Google Scholar 

  7. dell’Isola F., Seppecher P.: Edge Contact Forces and Quasi-Balanced Power. Meccanica 32(1), 33–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l Academie de Sciences 17 Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  9. Dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A 2009(465), 2177–2196 (2009)

    Article  MathSciNet  Google Scholar 

  10. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach la D Alembert. Zeitschrift fr Angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

  11. Enakoutsa, K.: Modéle Non-locaux en rupture ductile des métaux. Ph.D thesis, Université Pierre et Marie Curie (in French) (2007)

  12. Enakoutsa K.: Some new applications of the GLPD micromorphic model of ductile fracture. MMS 19(3), 242–259 (2012)

    MathSciNet  Google Scholar 

  13. Enakoutsa K.: Exact results for the problem of a hollow sphere subjected to hydrostatic tension and made of micromorphic plastic porous material. Mech. Res. Commun. 49, 1–7 (2012)

    Article  Google Scholar 

  14. Eringen A.C.: Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30, 1551–1565 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eringen A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  16. Forest, S.: Milieux continus généralisés et matériaux hétorogènes. Presses de l’Ecole des Mines, Paris (2006)

  17. Forest S.: Mechanics of generalized continua: construction by homogenization. J. Phys. IV 8, 39–48 (1998)

    MathSciNet  Google Scholar 

  18. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25(4), 44917454 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gao X.L., Park S.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  20. Gao, X.-L., Park, S.L., Ma, H.M.: Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math. Mech. Solids 14(47), 747–758 (2009)

  21. Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. IAM J. Appl. Math. 25, 556–575 (1973)

    MATH  MathSciNet  Google Scholar 

  22. Gologanu, M., Leblond, J.B., Perrin, G., Devaux, J.: Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (ed.) Continuum Micromechanics, CISM Courses and Lectures, vol. 377 pp. 61–130. Springer (1997)

  23. Gurson A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. ASME J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  24. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Koiter W.T.: Couple stress in the theory of elasticity I–II. Proc. Nederl. Akad. Wetensch. 67, 17–44 (1964)

    MATH  Google Scholar 

  26. Lam D.C.C., Yang F., Chong A.C.M. et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  27. Maugin, G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of generalized continua—from micromechanical basis to engineering applications, pp. 1–17. Springer, Berlin (2011)

  28. Ma H.M., Gao X.-L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225, 1075–1091 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Monchiet, V., Bonnet, G.: Détermination des proprietés effectives des milieux du second gradient: une approche par homogénization 19ème Congres Francais de Mécanique (CFM), Marseille, France, July 2009

  30. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 12, 51–78 (1964)

    MathSciNet  Google Scholar 

  31. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–738 (1965)

    Article  Google Scholar 

  32. Mindlin R.D., Tiersten H.F.: Effects of couple stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  33. Muhlich U., Zybell L., Kuna M.: Estimation of material properties for linear elastic gradient effective media. Eur. J. Mech. A Solids 31(1), 117–130 (2012)

    Article  MathSciNet  Google Scholar 

  34. Ramaswamy, S., Aravas, N .: Finite element implementation of gradient plasticity models. Part I: Gradient-dependent yield functions. Mech. Eng. 163, 11–32

  35. Sokolowski, M.: Theory of couple-stresses in bodies with constrained rotations. In: CISM Courses and Lectures, vol. 26. Springer, Berlin (1970)

  36. Suicker A.S.J., Chang C.S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142, 233–234 (2000)

    Google Scholar 

  37. Toupin R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tvergaard V., Needleman N.: Nonlocal effects on localization in a void-sheet. Int. J. Solids Struct. 34, 2221–2238 (1997)

    Article  MATH  Google Scholar 

  39. Vardoulakis I., Exakaktylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. Phys. IV Proc. 8, 399–406 (1998)

    Google Scholar 

  40. Zhao J., Pedroso D.: Strain gradient theory in orthogonal curvilinear coordinates. Int. J. Solids Struct. 45, 3507–3520 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koffi Enakoutsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enakoutsa, K. Analytical applications and effective properties of a second gradient isotropic elastic material model. Z. Angew. Math. Phys. 66, 1277–1293 (2015). https://doi.org/10.1007/s00033-014-0453-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0453-2

Keywords

Mathematics Subject Classification

Navigation