Skip to main content
Log in

Perichromatin region: a moveable feast

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The perichromatin region is an elusive zone of the cell nucleus located at the periphery of the condensed chromatin areas. This region is visible at the electron microscope level under special staining treatments, otherwise it is merged with the border of condensed chromatin. In this 200 nm-thick area, several fundamental cell processes take place, such as replication, DNA repair and transcription. In addition, RNA processing occurs in the perichromatin region, including 5′-capping and 3′-polyadenylation as well as splicing. Recently, it has become clear that also some epigenetics modifications take place there, such as methylation of DNA and RNA on cytosine and adenosine. In summary, this thin interface between chromatin and the interchromatinic space represents the zone where the majority of the functions of DNA in interphase occur, in a place where there is no steric hindrance of condensed chromatin, the products can easily move away toward their target and the enzymes can freely dock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from Trentani et al. Eur J Histochem 47:195–200, 2003, with permission. Bar = 30 nm, b Rat thymocyte, anti-5mC labelling. Most of the labelling occurs at the surface of chromatin, while the more distant few grains most probably label methylated RNA. c Hep-2 cell. After a short pulse of BrdU, beginning of replication is indicated by the labelling (green dots) present at the periphery of the chromatin. d Hep-2 cell. Labelling with an anti-DNA/RNA hybrid. The gold grains localized at the sites of transcription where the hybrids are present. Bar 200 nm

Similar content being viewed by others

References

  • Allfrey VG (1966) Control mechanisms in ribonucleic acid synthesis. Cancer Res 26(9):2026–2040

    PubMed  CAS  Google Scholar 

  • Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27(3):250–265

    Article  PubMed  CAS  Google Scholar 

  • Bernhard W, Granboulan N (1963) The fine structure of the cancer cell nucleus. Exp Cell Res 24:19–53

    Article  Google Scholar 

  • Biggiogera M, Fakan S (1998) Fine structural specific visualization of RNA on ultrathin sections. J Histochem Cytochem 46:389–395

    Article  PubMed  CAS  Google Scholar 

  • Biggiogera M, Masiello I (2017) Visualizing RNA at electron microscopy by terbium citrate. Methods Mol Biol 1560:277–283

    Article  PubMed  CAS  Google Scholar 

  • Bouchet-Marquis C, Dubochet J, Fakan S (2006) Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture. Histochem Cell Biol 125(1–2):43–51

    Article  PubMed  CAS  Google Scholar 

  • Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino SM (2007) Subnuclear localization and dynamics of the Pre-mRNA 3′ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell 18(4):1282–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16:1449–1462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Bio Cell 10:211–223

    Article  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S (2002) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116:335–343

    Article  CAS  Google Scholar 

  • Cortini R, Filion GJ (2018) Theoretical principles of transcription factor traffic on folded chromatin. Nat Commun 9(1):1740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Boni U (1994) The interphase nucleus as a dynamic structure. Int Rev Cytol 150:149–171

    Article  PubMed  Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4:86–90

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Bernhard W (1971) Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res 67:129–141

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Hankok R (1974) Localization of newly-synthesized DNA in a mammalian cell as visualized by high resolution autoradiography. Exp Cell Res 81:95–102

    Article  Google Scholar 

  • Fakan S, Puvion E (1980) The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 65:255–299

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, van Driel R (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 18:676–681

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Puvion E, Sphor G (1976) Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp Cell Res 99:155–164

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Leser G, Martin TE (1986) Immunoelectron microscope visualization of nuclear ribonucleoprotein antigens within spread transcription complexes. J Cell Biol 103:1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Callan HG (1962) H3 uridine incorporation in lampbrush chromosomes. Proc Natl Acad Sci 48:562–570

    Article  PubMed  CAS  Google Scholar 

  • Görnemann J, Kotovic KM, Hujer K, Neugebauer KM (2005) Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19:53–63

    Article  PubMed  CAS  Google Scholar 

  • Hancock R (2012) Structure of metaphase chromosomes: a role for effects of macromolecular crowding. PLoS One 7(4):e36045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hozak P, Hassan AB, Jackson DA, Cook PR (1993) Visualization of replication factories attached to a nucleoskeleton. Cell 73:361–373

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Deerinck TJ, Ellisman MH, Spector DL (1994) In vivo analysis of the stability and transport of nuclear poly(A) + RNA. J Cell Biol 126:877–899

    Article  PubMed  CAS  Google Scholar 

  • Jaunin F, Visser AE, Cmarko D, Aten JA, Fakan S (2000) Fine structural in situ analysis of nascent DNA movement following DNA replication. Exp Cell Res 260:313–323

    Article  PubMed  CAS  Google Scholar 

  • Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Wang PJ (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLOS Genet 14:e1007412

    Article  PubMed  PubMed Central  Google Scholar 

  • Knuckles P, Bühler M (2018) Adenosine methylation as a molecular imprint defining the fate of RNA. FEBS Lett. https://doi.org/10.1002/1873-3468.13107. (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Bühler M (2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569

    Article  PubMed  CAS  Google Scholar 

  • Manders EMM, Stap J, Strackee J, van Driel R, Aten JA (1996) Dynamic behavior of DNA replication do- mains. Exp Cell Res 226:328 – 335

    Article  PubMed  CAS  Google Scholar 

  • Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonahardt H, Eick D, Cremer C, Cremer T (2011) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Bio 75:475–492

    Article  Google Scholar 

  • Masiello I, Biggiogera M (2017) Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell Mol Life Sci 74:3057–3064

    Article  PubMed  CAS  Google Scholar 

  • Mazzotti G, Gobbi P, Manzoli L, Falconi M (1998) Nuclear morphology during the S phase. Microsc Res Tech 40:418–431

    Article  PubMed  CAS  Google Scholar 

  • Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27(3):266–288

    Article  PubMed  CAS  Google Scholar 

  • Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15:902–909

    Article  PubMed  CAS  Google Scholar 

  • Müller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG (2007) Organization of chromatin and histone modifications at a transcription site. J Cell Biol 177:957–967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nash RE, Puvion E, Bernhard W (1975) Perichromatin fibrils as components of rapidly labeled extranucleolar RNA. J Ultrastr Res 53:395–405

    Article  CAS  Google Scholar 

  • Niedojadlo J, Perret-Vivancos C, Kalland KH, Cmarko D, Cremer T, Van Driel R, Fakan S (2011) Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei. Exp Cell Res 317:433–444

    Article  PubMed  CAS  Google Scholar 

  • Puvion E, Bernhard W (1975) Ribonucleoprotein components in liver cell nuclei as visualized by cryoultramicrotomy. J Cell Biol 67(1):200–214

    Article  PubMed  CAS  Google Scholar 

  • Puvion E, Viron A, Assens C, Leduc EH, Jeanteur P (1984) Immunocytochemical identification of nuclear structures containing snRNPs in isolated rat liver cells. J Ultrast Res 87:180–189

    Article  CAS  Google Scholar 

  • Raska I, Michel LS, Jarnik M, Dundr M, Fakan S, Gasser S, Gassmann M, Hübscher U, Izaurralde E, Martinez E et al (1991) Ultrastructural cryoimmunocytochemistry is a convenient tool for the study of DNA replication in cultured cells. J Electron Microsc Tech 18:91–105

    Article  PubMed  CAS  Google Scholar 

  • Ris H (1961) Ultrastructure and molecular organization of genetic systems. Can J Genet Cytol 3:95–120

    Article  PubMed  CAS  Google Scholar 

  • Rouquette J, Genoud C, Vazquez-Nin GH, Kraus B, Cremer T, Fakan S (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17:801–810

    Article  PubMed  CAS  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    Article  PubMed  CAS  Google Scholar 

  • Sobczak-Thepot J, Harper F, Florentin Y, Zindy F, Brechot C, Puvion E (1993) Localization of cyclin A at the sites of cellular DNA replication. Exp Cell Res 206:43–48

  • Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S (2009) Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 122:83–91

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spedito A, Cisterna B, Malatesta M, Biggiogera M (2014) Use of halogenated precursors to define a transcription time window after treatment with hypometabolizing molecules. Histochem Cell Biol 141:243–249

    Article  PubMed  CAS  Google Scholar 

  • Swift H (1959) Studies on nuclear fine structure. Brookhaven Symp Biol 12:134–152

    PubMed  CAS  Google Scholar 

  • Testillano PS, Gorab E, Risueno MC (1994) A new approach to map transcription sites at the ultrastructural level. J Histochem Cytochem 42:1–10

    Article  PubMed  CAS  Google Scholar 

  • Trentani A, Testillano PS, Risueño MC, Biggiogera M (2003) Visualization of transcription sites at the electron microscope. Eur J Histochem 47:195–200

    Article  PubMed  CAS  Google Scholar 

  • Vázquez Nin GH, Echeverría OM, Ortiz R, Ubaldo E, Fakan S (1997) Effects of hypophyseal hormones on transcription and RNA export to the cytoplasm. Exp Cell Res 236:519–526

    Article  PubMed  Google Scholar 

  • Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp Cell Res 208:19–34

    Article  PubMed  CAS  Google Scholar 

  • von Schack ML, Fakan S, Villiger W (1991) Some applications of cryosubstitution in ultrastructural studies of the cell nucleus. Biol Cell 72(1–2):113–119

    Article  Google Scholar 

  • Watson M (1962) Observations on a granule associated with chromatin in the nuclei of cells of rat and mouse. J Cell Biol 13:162–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wee CL, Teo S, Oey NE, Wright GD, VanDongen HMA, VanDongen AMJ (2014) Nuclear Arc interacts with the histone acetyltransferase Tip60 to modify H4K12 acetylation. eNeuro. https://doi.org/10.1523/ENEURO.0019-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Li W (2017) Metl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Res 27:1100–1114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Biology and Biotechnology “L. Spallanzani”, University of Pavia (to M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Biggiogera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masiello, I., Siciliani, S. & Biggiogera, M. Perichromatin region: a moveable feast. Histochem Cell Biol 150, 227–233 (2018). https://doi.org/10.1007/s00418-018-1703-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1703-8

Keywords

Navigation