Skip to main content

Advertisement

Log in

An overview of potential molecular mechanisms involved in VSMC phenotypic modulation

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouhamed M, Reichenberg S, Robenek H, Plenz G (2003) Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol 82(9):473–482. doi:10.1078/0171-9335-00333

    Article  CAS  PubMed  Google Scholar 

  • Adam PJ, Regan CP, Hautmann MB, Owens GK (2000) Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem 275(48):37798–37806. doi:10.1074/jbc.M006323200

    Article  CAS  PubMed  Google Scholar 

  • Albinsson S, Sessa WC (2011) Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury? Physiol Genomics 43(10):529–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30(6):1118–1126. doi:10.1161/ATVBAHA.109.200873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Althoff TF, Offermanns S (2015) G-protein-mediated signaling in vascular smooth muscle cells—implications for vascular disease. J Mol Med. doi:10.1007/s00109-015-1305-z

    PubMed  Google Scholar 

  • Althoff TF, Albarran Juarez J, Troidl K, Tang C, Wang S, Wirth A, Takefuji M, Wettschureck N, Offermanns S (2012) Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. J Exp Med 209(12):2277–2290. doi:10.1084/jem.20120350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Assoian RK, Marcantonio EE (1997) The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis. J Clin Investig 100(11 Suppl):S15–S18

    CAS  PubMed  Google Scholar 

  • Berk BC (2001) Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 81(3):999–1030

    CAS  PubMed  Google Scholar 

  • Bochaton-Piallat ML, Gabbiani G (2005) Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. Handb Exp Pharmacol 170. Springer, Berlin, Heidelberg. doi:10.1007/3-540-27661-0_24

  • Boettger T, Beetz N, Kostin S, Schneider J, Krüger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Investig 119(9):2634–2647. doi:10.1172/JCI38864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bundy RE, Marczin N, Birks EF, Chester AH, Yacoub MH (2000) Transplant atherosclerosis: role of phenotypic modulation of vascular smooth muscle by nitric oxide. Gen Pharmacol 34(2):73–84

    Article  CAS  PubMed  Google Scholar 

  • Cecchettini A, Rocchiccioli S, Boccardi C, Citti L (2011) Vascular smooth muscle-cell activation: proteomics point of view. Int Rev Cell Mol Biol 288:43–99

    Article  CAS  PubMed  Google Scholar 

  • Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G, Hata A (2010) Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J 29(3):559–573. doi:10.1038/emboj.2009.370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB (2014) Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 9(2):e89824. doi:10.1371/journal.pone.0089824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen J, Kitchen CM, Streb JW, Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34(10):1345–1356. doi:10.1006/jmcc.2002.2086

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Simons M, Friesel R (2009) FRS2 via fibroblast growth factor receptor 1 is required for platelet-derived growth factor receptor beta-mediated regulation of vascular smooth muscle marker gene expression. J Biol Chem 284(23):15980–15992. doi:10.1074/jbc.M809399200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, Shi Z, Kilsdonk EP, Gui Y, Wang DZ, Zheng XL (2011) Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol 31(2):368–375. doi:10.1161/ATVBAHA.110.218149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng J, Du J (2007) Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol 27(8):1744–1751. doi:10.1161/atvbaha.107.147371

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105(2):158–166. doi:10.1161/circresaha.109.197517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, Ahn Y, Kee HJ, Kook H (2013) The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 229(2):348–355. doi:10.1016/j.atherosclerosis.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Cidad P, Moreno-Dominguez A, Novensa L, Roque M, Barquin L, Heras M, Perez-Garcia MT, Lopez-Lopez JR (2010) Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells. Arterioscler Thromb Vasc Biol 30(6):1203–1211. doi:10.1161/ATVBAHA.110.205187

    Article  CAS  PubMed  Google Scholar 

  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710. doi:10.1038/nature08195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548. doi:10.1084/jem.20101812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61. doi:10.1038/nature07086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2009) Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 284(6):3728–3738. doi:10.1074/jbc.M808788200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis-Dusenbery BN, Wu C, Hata A, Sessa WC (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31(11):2370–2377. doi:10.1161/atvbaha.111.226670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dey NB, Foley KF, Lincoln TM, Dostmann WR (2005) Inhibition of cGMP-dependent protein kinase reverses phenotypic modulation of vascular smooth muscle cells. J Cardiovasc Pharmacol 45(5):404–413

    Article  CAS  PubMed  Google Scholar 

  • Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. doi:10.1146/annurev-pathol-012513-104715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MVG, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. http://www.nature.com/cdd/journal/v16/n12/suppinfo/cdd2009153s1.html

  • Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19(4):1004–1013. doi:10.1161/01.atv.19.4.1004

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Hayward IP, Thomas AC, Campbell GR, Campbell JH (1999) Matrix metalloproteinases can facilitate the heparanase-induced promotion of phenotypic change in vascular smooth muscle cells. Atherosclerosis 145(1):97–106. doi:10.1016/S0021-9150(99)00019-2

    Article  CAS  PubMed  Google Scholar 

  • Gollasch M, Haase H, Ried C, Lindschau C, Morano I, Luft FC, Haller H (1998) L-type calcium channel expression depends on the differentiated state of vascular smooth muscle cells. FASEB J 12(7):593–601

    CAS  PubMed  Google Scholar 

  • Gomez D, Shankman LS, Nguyen AT, Owens GK (2013) Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 10(2):171–177. doi:10.1038/nmeth.2332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan H, Gao L, Zhu L, Yan L, Fu M, Chen C, Dong X, Wang L, Huang K, Jiang H (2012) Apigenin attenuates neointima formation via suppression of vascular smooth muscle cell phenotypic transformation. J Cell Biochem 113(4):1198–1207. doi:10.1002/jcb.23452

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Makarova N, Cheng Y, Shuyu E, Ji RR, Zhang C, Farrar P, Tigyi G (2008) The early and late stages in phenotypic modulation of vascular smooth muscle cells: differential roles for lysophosphatidic acid. Biochim Biophys Acta 1781(9):571–581. doi:10.1016/j.bbalip.2008.06.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K (1998) Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 273(44):28860–28867

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89(3):251–258. doi:10.1161/hh1501.094265

    Article  CAS  PubMed  Google Scholar 

  • Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107(1):307–319. doi:10.1083/jcb.107.1.307

    Article  CAS  PubMed  Google Scholar 

  • Hogarth DK, Sandbo N, Taurin S, Kolenko V, Miano JM, Dulin NO (2004) Dual role of PKA in phenotypic modulation of vascular smooth muscle cells by extracellular ATP. Am J Physiol Cell Physiol 287(2):C449–C456

    Article  CAS  PubMed  Google Scholar 

  • House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456(5):769–785. doi:10.1007/s00424-008-0491-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YL, Shi GY, Jiang MJ, Lee H, Chou YW, Wu HL, Yang HY (2008) Epidermal growth factor up-regulates the expression of nestin through the Ras-Raf-ERK signaling axis in rat vascular smooth muscle cells. Biochem Biophys Res Commun 377(2):361–366. doi:10.1016/j.bbrc.2008.09.143

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE (2010) miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 285(13):9383–9389. doi:10.1074/jbc.M109.095612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100(11):1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Jiang GJ, Han M, Zheng B, Wen JK (2006) Hyperplasia suppressor gene associates with smooth muscle alpha-actin and is involved in the redifferentiation of vascular smooth muscle cells. Heart Vessels 21(5):315–320. doi:10.1007/s00380-006-0914-4

    Article  PubMed  Google Scholar 

  • Johnson JL, van Eys GJJM, Angelini GD, George SJ (2001) Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 21(7):1146–1151. doi:10.1161/hq0701.092106

    Article  CAS  PubMed  Google Scholar 

  • Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding egf-like growth factor. Circ Res 87(2):92–98. doi:10.1161/01.res.87.2.92

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Albuquerque N, Bogaert YE, Van Putten V, Weiser-Evans MC, Nemenoff RA (2005) Patterns of gene expression differentially regulated by platelet-derived growth factor and hypertrophic stimuli in vascular smooth muscle cells markers for phenotypic modulation and response to injury. J Biol Chem 280(20):19966–19976

    Article  CAS  PubMed  Google Scholar 

  • Karkanis T, Li S, Pickering JG, Sims SM (2003) Plasticity of KIR channels in human smooth muscle cells from internal thoracic artery. Am J Physiol Heart Circ Physiol 284(6):H2325–H2334

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Park S, Kwon J-S, Choe N, Ahn Y, Kook H, Jeong MH (2013) B cell translocation gene, a direct target of miR-142-5p, inhibits vascular smooth muscle cell proliferation by down-regulating cell cycle progression. FEBS Lett 587(15):2385–2392. doi:10.1016/j.febslet.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hata A, Kang H (2014) Down-regulation of miR-96 by bone morphogenetic protein signaling is critical for vascular smooth muscle cell phenotype modulation. J Cell Biochem 115(5):889–895. doi:10.1002/jcb.24730

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Yang DK, Kim S, Kang H (2015) miR-142-3p is a regulator of the TGFbeta-mediated vascular smooth muscle cell phenotype. J Cell Biochem 116(10):2325–2333. doi:10.1002/jcb.25183

    Article  CAS  PubMed  Google Scholar 

  • Kiyan J, Kusch A, Tkachuk S, Kramer J, Haller H, Dietz R, Smith G, Dumler I (2007) Rosuvastatin regulates vascular smooth muscle cell phenotypic modulation in vascular remodeling: role for the urokinase receptor. Atherosclerosis 195(2):254–261. doi:10.1016/j.atherosclerosis.2006.12.030

    Article  CAS  PubMed  Google Scholar 

  • Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B, Dumler I (2014) oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol 66:72–82. doi:10.1016/j.yjmcc.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  • Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108(9):1119–1125. doi:10.1161/01.CIR.0000086464.04719.DD

    Article  PubMed  CAS  Google Scholar 

  • Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2014) Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens 28(8):510–516. doi:10.1038/jhh.2013.117

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87(6):1069–1078. doi:10.1016/S0092-8674(00)81801-2

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva O, Aalkjaer C, Matchkov VV (2013) Vascular smooth muscle cell phenotype is defined by Ca2+—dependent transcription factors. FEBS J 280(21):5488–5499. doi:10.1111/febs.12414

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Boedtkjer DMB, Matchkov VV, Aalkjaer C (2014) Downregulation of L-type ca2 + channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 306(9):H1287–H1301

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu S-Z, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgårdh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98(4):557–563. doi:10.1161/01.RES.0000204724.29685.db

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 95(2):194–204. doi:10.1093/cvr/cvs135

    Article  CAS  PubMed  Google Scholar 

  • Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A (2007) Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem 282(51):37244–37255. doi:10.1074/jbc.M708137200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226(4):1035–1043. doi:10.1002/jcp.22422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li P, Liu Y, Yi B, Wang G, You X, Zhao X, Summer R, Qin Y, Sun J (2013a) MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res 99(1):185–193. doi:10.1093/cvr/cvt082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li P, Zhu N, Yi B, Wang N, Chen M, You X, Zhao X, Solomides CC, Qin Y, Sun J (2013b) MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res 113(10):1117–1127. doi:10.1161/CIRCRESAHA.113.301306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280(10):9719–9727. doi:10.1074/jbc.M412862200

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104(4):476–487. doi:10.1161/CIRCRESAHA.108.185363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, Dong W, Lin Z, Lu J, Wan H, Zhou Z, Liu Z (2013) CCN4 regulates vascular smooth muscle cell migration and proliferation. Mol Cells 36(2):112–118. doi:10.1007/s10059-013-0012-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mandegar M, Yuan JX-J (2002) Role of K+ channels in pulmonary hypertension. Vascul Pharmacol 38(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Massagué J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19(23):2783–2810. doi:10.1101/gad.1350705

    Article  PubMed  CAS  Google Scholar 

  • Merlet E, Atassi F, Motiani RK, Mougenot N, Jacquet A, Nadaud S, Capiod T, Trebak M, Lompre AM, Marchand A (2013) miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res 98(3):458–468. doi:10.1093/cvr/cvt045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miano JM, Kelly LA, Artacho CA, Nuckolls TA, Piantedosi R, Blaner WS (1998) All-trans-retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery after balloon withdrawal injury. Circulation 98(12):1219–1227. doi:10.1161/01.cir.98.12.1219

    Article  CAS  PubMed  Google Scholar 

  • Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292(1):C70–C81

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Velado E, Moreno-Dominguez A, Colinas O, Cidad P, Heras M, Perez-Garcia MT, Lopez-Lopez JR (2005) Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells. Circ Res 97(12):1280–1287. doi:10.1161/01.RES.0000194322.91255.13

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Velado E, Perez-Carretero FD, Colinas O, Cidad P, Heras M, Lopez-Lopez JR, Perez-Garcia MT (2010) Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovasc Res 86(3):383–391. doi:10.1093/cvr/cvq011

    Article  CAS  PubMed  Google Scholar 

  • Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clowes AW (2005) Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation. Circ Res 96(2):172–179. doi:10.1161/01.RES.0000154595.87608.db

    Article  CAS  PubMed  Google Scholar 

  • Millette E, Rauch BH, Kenagy RD, Daum G, Clowes AW (2006) Platelet-derived growth factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human smooth muscle cells. Trends Cardiovasc Med 16(1):25–28. doi:10.1016/j.tcm.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  • Mogami H, Kojima I (1993) Stimulation of calcium entry is prerequisite for DNA synthesis induced by platelet-derived growth factor in vascular smooth muscle cells. Biochem Biophys Res Commun 196(2):650–658

    Article  CAS  PubMed  Google Scholar 

  • Moiseeva EP (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52(3):372–386

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Gudey SK, Landstrom M (2012) Non-smad signaling pathways. Cell Tissue Res 347(1):11–20. doi:10.1007/s00441-011-1201-y

    Article  CAS  PubMed  Google Scholar 

  • Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH (1999) Molecular cloning and characterization of the intermediate-conductance Ca2+—activated K+ channel in vascular smooth muscle: relationship between KCa channel diversity and smooth muscle cell function. Circ Res 85(9):e33–e43. doi:10.1161/01.RES.85.9.e33

    Article  CAS  PubMed  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75(3):487–517

    CAS  PubMed  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801

    Article  CAS  PubMed  Google Scholar 

  • Owe-Young R, Schyvens CG, Qasabian RA, Conigrave AD, Macdonald PS, Williamson DJ (1999) Transcriptional down-regulation of the rabbit pulmonary artery endothelin B receptor during phenotypic modulation. Br J Pharmacol 126(1):103–110. doi:10.1038/sj.bjp.0702280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, Li JC (2013) Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells. Lab Invest 93(8):880–887. doi:10.1038/labinvest.2013.79

    Article  CAS  PubMed  Google Scholar 

  • Platoshyn O, Remillard CV, Fantozzi I, Sison T, Yuan JX (2005) Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells. Pflugers Arch 451(2):380–387. doi:10.1007/s00424-005-1478-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quignard J-F, Harricane M-C, Ménard C, Lory P, Nargeot J, Capron L, Mornet D, Richard S (2001) Transient down-regulation of L-type Ca2+ channel and dystrophin expression after balloon injury in rat aortic cells. Cardiovasc Res 49(1):177–188. doi:10.1016/s0008-6363(00)00210-8

    Article  CAS  PubMed  Google Scholar 

  • Quintavalle M, Elia L, Condorelli G, Courtneidge SA (2010) MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. Journal cell Biol 189(1):13–22. doi:10.1083/jcb.200912096

    Article  CAS  Google Scholar 

  • Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L (2011) MiR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet 4(2):197–205. doi:10.1161/CIRCGENETICS.110.958702

    Article  CAS  PubMed  Google Scholar 

  • Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V, Hénaut L, el Islam Djelouat MS, Benchitrit J, Massy ZA, Metzinger L (2012) Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One 7(10):e47807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rocchiccioli S, Ucciferri N, Comelli L, Trivella MG, Citti L, Cecchettini A (2012) Proteomics changes in adhesion molecules: a driving force for vascular smooth muscle cell phenotypic switch. Mol BioSyst 8(4):1052–1059. doi:10.1039/c2mb05470a

    Article  CAS  PubMed  Google Scholar 

  • Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C, Fagan K, Cribbs L (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96(8):864–872. doi:10.1161/01.RES.0000163066.07472.ff

    Article  CAS  PubMed  Google Scholar 

  • Rossi GP, Cavallin M, Belloni AS, Mazzocchi G, Nussdorfer GG, Pessina AC, Sartore S (2002) Aortic smooth muscle cell phenotypic modulation and fibrillar collagen deposition in angiotensin II-dependent hypertension. Cardiovasc Res 55(1):178–189

    Article  CAS  PubMed  Google Scholar 

  • Scalbert E, Bril A (2008) Implication of microRNAs in the cardiovascular system. Curr Opin Pharmacol 8(2):181–188. doi:10.1016/j.coph.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  • Sun S-G, Zheng B, Han M, Fang X-M, Li H-X, Miao S-B, Su M, Han Y, Shi H-J, Wen J-K (2010) miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 12(1):56–62. doi:10.1038/embor.2010.172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. doi:10.1038/nature09783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song J, Rolfe BE, Campbell JH, Campbell GR (1998) Changes in three-dimensional architecture of microfilaments in cultured vascular smooth muscle cells during phenotypic modulation. Tissue Cell 30(3):324–333

    Article  CAS  PubMed  Google Scholar 

  • Song L, Duan P, Guo P, Li D, Li S, Xu Y, Zhou Q (2012) Downregulation of miR-223 and miR-153 mediates mechanical stretch-stimulated proliferation of venous smooth muscle cells via activation of the insulin-like growth factor-1 receptor. Arch Biochem Biophys 528(2):204–211. doi:10.1016/j.abb.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li M, Cao J, Wang Z (2013) MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res 100(2):272–279. doi:10.1093/cvr/cvt172

    Article  CAS  PubMed  Google Scholar 

  • Thompson AM, Martin KA, Rzucidlo EM (2014) Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS One 9(1):e85495. doi:10.1371/journal.pone.0085495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tiwari S, Zhang Y, Heller J, Abernethy DR, Soldatov NM (2006) Atherosclerosis-related molecular alteration of the human CaV1.2 calcium channel alpha1C subunit. Proc Natl Acad Sci USA 103(45):17024–17029. doi:10.1073/pnas.0606539103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109(8):880–893. doi:10.1161/CIRCRESAHA.111.240150

    Article  CAS  PubMed  Google Scholar 

  • Wang GL (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91(10):28e–32e. doi:10.1161/01.res.0000042062.69653.e4

    Article  Google Scholar 

  • Wang D-Z, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105(7):851–862. doi:10.1016/S0092-8674(01)00404-4

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang D-Z, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428(6979):185–189. http://www.nature.com/nature/journal/v428/n6979/suppinfo/nature02382_S1.html

  • Wang C, Han M, Zhao XM, Wen JK (2008) Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem 144(3):313–321. doi:10.1093/jb/mvn068

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hu G, Zhou J (2010) Repression of versican expression by microRNA-143. J Biol Chem 285(30):23241–23250. doi:10.1074/jbc.M109.084673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YS, Wang HY, Liao YC, Tsai PC, Chen KC, Cheng HY, Lin RT, Juo SH (2012) MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc Res 95(4):517–526. doi:10.1093/cvr/cvs223

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yan C-H, Li Y, Xu K, Tian X-X, Peng C-F, Tao J, Sun M-Y, Han Y-L (2013) MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp Cell Res 319(8):1165–1175. doi:10.1016/j.yexcr.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  • Wight TN (2008) Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 13:4933–4937

    Article  CAS  PubMed  Google Scholar 

  • Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94(9):1158–1167. doi:10.1161/01.RES.0000126921.29919.51

    Article  CAS  PubMed  Google Scholar 

  • Worth NF, Rolfe BE, Song J, Campbell GR (2001) Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton 49(3):130–145. doi:10.1002/cm.1027

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE (2010) MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 20(2):205–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23(18):2166–2178. doi:10.1101/gad.1842409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Ahmed ASI, Kang X, Hu G, Liu F, Zhang W, Zhou J (2015) MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP. Arterioscler Thromb Vasc Biol 35(10):2145–2152. doi:10.1161/ATVBAHA.115.305748

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, Liaw L, Friesel RE (2013) Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via akt/foxo/myocardin signaling. PLoS One 8(3):e58746. doi:10.1371/journal.pone.0058746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JXJ (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284(2):C316–C330

    Article  CAS  PubMed  Google Scholar 

  • Yu M-L, Wang J-F, Wang G-K, You X-H, Zhao X-X, Jing Q, Qin Y-W (2011) Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J 75(3):703–709. doi:10.1253/circj.CJ-10-0393

    Article  CAS  PubMed  Google Scholar 

  • Yuan X-J (1995) Voltage-gated K+ currents regulate resting membrane potential and [Ca2 +]i in pulmonary arterial myocytes. Circ Res 77(2):370–378. doi:10.1161/01.res.77.2.370

    Article  CAS  PubMed  Google Scholar 

  • Yuan JXJ, Aldinger AM, Juhaszova M, Wang J, Conte JV, Gaine SP, Orens JB, Rubin LJ (1998a) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98(14):1400–1406. doi:10.1161/01.cir.98.14.1400

    Article  CAS  PubMed  Google Scholar 

  • Yuan X-J, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998b) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351(9104):726–727. doi:10.1016/s0140-6736(05)78495-6

    Article  CAS  PubMed  Google Scholar 

  • Zargham R, Thibault G (2006) α8 Integrin expression is required for maintenance of the smooth muscle cell differentiated phenotype. Cardiovasc Res 71(1):170–178

    Article  CAS  PubMed  Google Scholar 

  • Zargham R, Touyz RM, Thibault G (2007) Alpha 8 integrin overexpression in de-differentiated vascular smooth muscle cells attenuates migratory activity and restores the characteristics of the differentiated phenotype. Atherosclerosis 195(2):303–312. doi:10.1016/j.atherosclerosis.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Dong H, Rubin LJ, Yuan JXJ (2007) Upregulation of Na +/Ca2 + exchanger contributes to the enhanced Ca2 + entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292(6):C2297–C2305

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xie P, Wang J, Yang Q, Fang C, Zhou S, Li J (2010) Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension. J Biol Chem 285(18):13666–13677. doi:10.1074/jbc.M109.087718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Wang X, Zhang Y, Eisner GM, Asico LD, Jose PA, Zeng C (2011) Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens 29(8):1560–1568. doi:10.1097/HJH.0b013e328348ef8e

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32(4):189–197. doi:10.1016/j.tibs.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Imbrie GA, Baur WE, Iyer LK, Aronovitz MJ, Kershaw TB, Haselmann GM, Lu Q, Karas RH (2013) Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 33(2):257–265. doi:10.1161/ATVBAHA.112.300200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng J-P, Ju D, Shen J, Yang M, Li L (2010) Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture. Exp Mol Pathol 88(1):52–57. doi:10.1016/j.yexmp.2009.10.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Niu J, Zhang Z (2010) The role of lysophosphatidic acid receptors in phenotypic modulation of vascular smooth muscle cells. Mol Biol Rep 37(6):2675–2686. doi:10.1007/s11033-009-9798-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC 81471193 to Li-Li Zhang, 81271282 to Jing-Cheng Li and 81400967 to Yan Pi).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Cheng Li or Li-Li Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MJ., Zhou, Y., Chen, L. et al. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol 145, 119–130 (2016). https://doi.org/10.1007/s00418-015-1386-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1386-3

Keywords

Navigation