Skip to main content
Log in

Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Recognition of glycans by lectins leads to cell adhesion and growth regulation. The specificity and selectivity of this process are determined by carbohydrate structure (sequence and shape) and topology of its presentation. The synthesis of (neo)glycoconjugates with bi- to oligo-valency (glycoclusters) affords tools to delineate structure–activity relationships by blocking lectin binding to an artificial matrix, often a glycoprotein, or cultured cell lines. The drawback of these assays is that glycan presentation is different from that in tissues. In order to approach the natural context, we here introduce lectin histochemistry on fixed tissue sections to determine the susceptibility of binding of two plant lectins, i.e., GSA-II and WGA, to a series of 10 glycoclusters. Besides valency, this panel covers changes in the anomeric position (α/β) and the atom at the glycosidic linkage (O/S). Flanked by cell and solid-phase assays with human tumor lines and two mucins, respectively, staining (intensity and profile) was analyzed in sections of murine jejunum, stomach and epididymis as a function of glycocluster presence. The marked and differential sensitivity of signal generation to structural aspects of the glycoclusters proves the applicability of this method. This enables comparisons between data sets obtained by using (neo)glycoconjugates, cells and the tissue context as platforms. The special advantage of processing tissue sections is the monitoring of interference with lectin association at sites that are relevant for functionality. Testing glycoclusters in lectin histochemistry will especially be attractive in cases of multi-target recognition (glycans, proteins and lipids) by a tissue lectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abad-Rodríguez J, Díez-Revuelta N (2015) Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 40:385–396

    Article  PubMed  Google Scholar 

  • Amano M, Eriksson H, Manning JC, Detjen KM, André S, Nishimura S-I, Lehtiö J, Gabius H-J (2012) Tumour suppressor p16INK4a: anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J 279:4062–4080

    Article  CAS  PubMed  Google Scholar 

  • André S, Sansone F, Kaltner H, Casnati A, Kopitz J, Gabius H-J, Ungaro R (2008) Calix[n]arene-based glycoclusters: bioactivity of thiourea-linked galactose/lactose moieties as inhibitors of binding of medically relevant lectins to a glycoprotein and cell-surface glycoconjugates and selectivity among human adhesion/growth-regulatory galectins. ChemBioChem 9:1649–1661

    Article  PubMed  Google Scholar 

  • André S, Velasco-Torrijos T, Leyden R, Gouin S, Tosin M, Murphy PV, Gabius H-J (2009a) Phenylenediamine-based bivalent glycocyclophanes: synthesis and analysis of the influence of scaffold rigidity and ligand spacing on lectin binding in cell systems with different glycomic profiles. Org Biomol Chem 7:4715–4725

    Article  PubMed  Google Scholar 

  • André S, Specker D, Bovin NV, Lensch M, Kaltner H, Gabius H-J, Wittmann V (2009b) Carbamate-linked lactose: design of clusters and evidence for selectivity to block binding of human lectins to (neo)glycoproteins with increasing degree of branching and to tumor cells. Bioconjug Chem 20:1716–1728

    Article  PubMed  Google Scholar 

  • André S, O’Sullivan S, Koller C, Murphy PV, Gabius H-J (2015a) Bi- to tetravalent glycoclusters presenting GlcNAc/GalNAc as inhibitors: from plant agglutinins to human macrophage galactose-type lectin (CD301) and galectins. Org Biomol Chem 13:4190–4203

    Article  PubMed  Google Scholar 

  • André S, O’Sullivan S, Gabius H-J, Murphy PV (2015b) Glycoclusters as lectin inhibitors: comparative analysis on two plant agglutinins with different folding as a step towards rules for selectivity. Tetrahedron 71:6867–6880

    Article  Google Scholar 

  • Ardá A, Blasco P, Varon Silva D, Schubert V, André S, Bruix M, Cañada FJ, Gabius H-J, Unverzagt C, Jiménez-Barbero J (2013) Molecular recognition of complex-type biantennary N-glycans by protein receptors: a three-dimensional view on epitope selection by NMR. J Am Chem Soc 135:2667–2675

    Article  PubMed  Google Scholar 

  • Bennett HS (1963) Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11:14–23

    Article  Google Scholar 

  • Celie JWAM, Beelen RHJ, van den Born J (2005) Effect of fixation protocols on in situ detection of L-selectin ligands. J Immunol Methods 298:155–159

    Article  CAS  PubMed  Google Scholar 

  • Chabre YM, Roy R (2009) The chemist’s way to prepare multivalency. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 53–70

    Google Scholar 

  • Corfield AP, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 40:351–359

    Article  CAS  PubMed  Google Scholar 

  • Damjanov I (1987) Lectin cytochemistry and histochemistry. Lab Invest 57:5–20

    CAS  PubMed  Google Scholar 

  • Danguy A, Akif F, Pajak B, Gabius H-J (1994) Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 9:155–171

    CAS  PubMed  Google Scholar 

  • Dawson H, André S, Karamitopoulou E, Zlobec I, Gabius H-J (2013) The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res 33:3053–3059

    CAS  PubMed  Google Scholar 

  • Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117:41–55

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E, Martinez-Prats L, Colmenares M, Naranjo-Gomez M, Borras FE, Munoz P, Zubiaur M, Toribio ML, Delgado R, Corbi AL (2007) The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 109:5337–5345

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius H-J, Khachigian L, Detjen K, Rosewicz S (2005) Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem 280:37266–37277

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (2015) The magic of the sugar code. Trends Biochem Sci 40:341

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Walzel H, Joshi SS, Kruip J, Kojima S, Gerke V, Kratzin H, Gabius S (1992) The immunomodulatory β-galactoside-specific lectin from mistletoe: partial sequence analysis, cell and tissue binding and impact on intracellular biosignaling of monocytic leukemia cells. Anticancer Res 12:669–676

    CAS  PubMed  Google Scholar 

  • Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, van de Wouwer M, André S, Villalobo A (2012) Down-regulation of the epidermal growth factor receptor by altering N-glycosylation: emerging role of β1,4-galactosyltransferases. Anticancer Res 32:1565–1572

    CAS  PubMed  Google Scholar 

  • Gabius H-J, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40:360–376

    Article  CAS  PubMed  Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins. Properties, functions, and applications in biology and medicine. Academic Press, Orlando, pp 33–247

    Google Scholar 

  • Habermann FA, André S, Kaltner H, Kübler D, Sinowatz F, Gabius H-J (2011) Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. Histochem Cell Biol 135:539–552

    Article  CAS  PubMed  Google Scholar 

  • Hanisch FG, Bonar D, Schloerer N, Schroten H (2014) Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J Biol Chem 289:27363–27375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennet T, Cabalzar J (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 40:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hill HD Jr, Reynolds JA, Hill RL (1977) Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem 252:3791–3798

    CAS  PubMed  Google Scholar 

  • Hoffmann W (2015) TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more. Int J Oncol 47:806–816

    PubMed  Google Scholar 

  • Hoffmeister K, Falet H (2009) Platelet glycoproteins as lectin in hematology. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 485–493

    Google Scholar 

  • Ihida K, Suganuma T, Tsuyama S, Murata F (1988) Glycoconjugate histochemistry of the rat fundic gland using Griffonia simplicifolia agglutinin-II during the development. Am J Anat 182:250–256

    Article  CAS  PubMed  Google Scholar 

  • Josefsson EC, Gebhard HH, Stossel TP, Hartwig JH, Hoffmeister KM (2005) The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem 280:18025–18032

    Article  CAS  PubMed  Google Scholar 

  • Kochetkov NK, Derevitskaya VA, Arbatsky NP (1976) The structure of pentasaccharides and hexasaccharides from blood group substance H. Eur J Biochem 67:129–136

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Damjanov I (1984) Anatomic distribution of lectin-binding sites in mouse testis and epididymis. Differentiation 27:74–81

    Article  CAS  PubMed  Google Scholar 

  • Lee RT, Lee YC (1994) Enhanced biochemical affinities of multivalent neoglycoconjugates. In: Lee YC, Lee RT (eds) Neoglycoconjugates. Preparation and applications. Academic Press, San Diego, pp 23–50

    Chapter  Google Scholar 

  • Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius H-J (2010) Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 39:481–493

    Article  CAS  PubMed  Google Scholar 

  • Lotan R, Gussin AE, Lis H, Sharon N (1973) Purification of wheat germ agglutinin by affinity chromatography on a Sepharose-bound N-acetylglucosamine derivative. Biochem Biophys Res Commun 52:656–662

    Article  CAS  PubMed  Google Scholar 

  • Maierhofer C, Rohmer K, Wittmann V (2007) Probing multivalent carbohydrate-lectin interactions by an enzyme-linked lectin assay employing covalently immobilized carbohydrates. Bioorg Med Chem 15:7661–7676

    Article  CAS  PubMed  Google Scholar 

  • Monsigny M, Roche A-C, Sene C, Maget-Dana R, Delmotte F (1980) Sugar-lectin interactions: how does wheat germ agglutinin bind sialoglycoconjugates? Eur J Biochem 104:147–153

    Article  CAS  PubMed  Google Scholar 

  • Murphy PV, André S, Gabius H-J (2013) The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 18:4026–4053

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Ota H, Katsuyama T, Akamatsu T, Ishihara K, Kurihara M, Hotta K (1998) Histochemical reactivity of normal, metaplastic, and neoplastic tissues to α-linked N-acetylglucosamine residue-specific monoclonal antibody HIK1083. J Histochem Cytochem 46:793–801

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J (2014) Dual roles of gastric gland mucin-specific O-glycans in prevention of gastric cancer. Acta Histochem Cytochem 47:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakayama J, Yeh JC, Misra AK, Ito S, Katsuyama T, Fukuda M (1999) Expression cloning of a human α1,4-N-acetylglucosaminyltransferase that forms GlcNAcα1,4Galβ-R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci USA 96:8991–8996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oinuma T, Ide S, Kawano J, Suganuma T (1994) Purification and immunohistochemistry of Griffonia simplicifolia agglutinin-II-binding mucus glycoprotein in rat stomach. Glycobiology 4:469–475

    Article  CAS  PubMed  Google Scholar 

  • Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182

    Article  CAS  PubMed  Google Scholar 

  • Patsos G, Corfield A (2009) O-Glycosylation: structural diversity and function. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 111–137

    Google Scholar 

  • Peters BP, Ebisu S, Goldstein IJ, Flashner M (1979) Interaction of wheat germ agglutinin with sialic acid. Biochemistry 18:5505–5511

    Article  CAS  PubMed  Google Scholar 

  • Pipirou Z, Powlesland AS, Steffen I, Pohlmann S, Taylor ME, Drickamer K (2011) Mouse LSECtin as a model for a human Ebola virus receptor. Glycobiology 21:806–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plzák J, Betka J, Smetana K Jr, Chovanec M, Kaltner H, André S, Kodet R, Gabius H-J (2004) Galectin-3: an emerging prognostic indicator in advanced head and neck carcinoma. Eur J Cancer 40:2324–2330

    Article  PubMed  Google Scholar 

  • Reuter G, Gabius H-J (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Pfeil R, Stoll S, Schauer R, Kamerling JP, Versluis C, Vliegenthart JFG (1983) Identification of new sialic acids derived from glycoprotein of bovine submandibular gland. Eur J Biochem 134:139–143

    Article  CAS  PubMed  Google Scholar 

  • Rossez Y, Maes E, Lefebvre Darroman T, Gosset P, Ecobichon C, Joncquel Chevalier Curt M, Boneca IG, Michalski J-C, Robbe-Masselot C (2012) Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology 22:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1978) The lectins: molecular probes in cell biology and membrane research. Exp Pathol 3:1–186

    Google Scholar 

  • Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell-type specificity of cell surface glycoconjugate expression: analysis by protein A-gold and lectin-gold techniques. Histochem Cell Biol 106:79–92

    Article  CAS  PubMed  Google Scholar 

  • Roth J (2011) Lectins for histochemical demonstration of glycans. Histochem Cell Biol 136:117–130

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Brown D, Orci L (1983) Regional distribution of N-acetyl-D-galactosamine residues in the glycocalyx of glomerular podocytes. J Cell Biol 96:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ruderisch H, Detjen KM, Welzel M, André S, Fischer C, Gabius H-J, Rosewicz S (2011) Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ 18:806–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savage AV, Donoghue CM, D’Arcy SM, Koeleman CA, van den Eijnden DH (1990) Structure determination of five sialylated trisaccharides with core types 1, 3 or 5 isolated from bovine submaxillary mucin. Eur J Biochem 192:427–432

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40:397–406

    Article  CAS  PubMed  Google Scholar 

  • Schrével J, Gros D, Monsigny M (1981) Cytochemistry of cell glycoconjugates. Progr Histochem Cytochem 14(2):1–269

    Article  Google Scholar 

  • Schwefel D, Maierhofer C, Beck JG, Seeberger S, Diederichs K, Moller HM, Welte W, Wittmann V (2010) Structural basis of multivalent binding to wheat germ agglutinin. J Am Chem Soc 132:8704–8719

    Article  CAS  PubMed  Google Scholar 

  • Smetana K Jr, André S, Kaltner H, Kopitz J, Gabius H-J (2013) Context-dependent multifunctionality of galectin-1: a challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets 17:379–392

    Article  CAS  PubMed  Google Scholar 

  • Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186–235

    Article  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    Article  CAS  PubMed  Google Scholar 

  • Suzaki E, Kataoka K (1992) Lectin cytochemistry in the gastrointestinal tract with special reference to glycosylation in the Golgi apparatus of Brunner’s gland cells. J Histochem Cytochem 40:379–385

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Yang J, Tang X, Ying W, Qian X, He F (2010) The DC-SIGN family member LSECtin is a novel ligand of CD44 on activated T cells. Eur J Immunol 40:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Toegel S, Bieder D, André S, Kayser K, Walzer SM, Hobusch G, Windhager R, Gabius H-J (2014) Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 142:373–388

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Osawa T (1986) Carbohydrate structures of bovine submaxillary mucin. Carbohydr Res 151:391–402

    Article  CAS  PubMed  Google Scholar 

  • van Halbeek H, Gerwig GJ, Vliegenthart JFG, Smits HL, van Kerkhof PJM, Kramer MF (1983) Terminal α1,4-linked N-acetylglucosamine: a characteristic constituent of duodenal-gland mucous glycoproteins in rat and pig. A high-resolution 1H-NMR study. Biochim Biophys Acta 747:107–116

    Article  PubMed  Google Scholar 

  • Wright CS (1990) 2.2 Å resolution structure analysis of two refined N-acetylneuraminyllactose—wheat germ agglutinin isolectin complexes. J Mol Biol 215:635–651

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu ZH, Gabius H-J, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T cell suppression. Diabetes 60:2341–2349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada K, Hyodo S, Matsuno YK, Kinoshita M, Maruyama SZ, Osaka YS, Casal E, Lee YC, Kakehi K (2007) Rapid and sensitive analysis of mucin-type glycans using an in-line flow glycan-releasing apparatus. Anal Biochem 371:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zanini D, Roy R (1997) Chemoenzymatic synthesis and lectin-binding properties of dendritic N-acetyllactosamine. Bioconjug Chem 8:187–192

    Article  CAS  PubMed  Google Scholar 

  • Zeng F-Y, Gerke V, Gabius H-J (1993) Identification of annexin II, annexin VI and glyceraldehyde-3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart. Int J Biochem 25:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Moussodia R-O, Murzeau C, Sun HJ, Klein ML, Vértesy S, André S, Roy R, Gabius H-J, Percec V (2015a) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew Chem Int Ed 54:4036–4040

    Article  CAS  Google Scholar 

  • Zhang S, Moussodia R-O, Vértesy S, André S, Klein ML, Gabius H-J, Percec V (2015b) Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci USA 112:5585–5590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Xiao Q, Sherman SE, Muncan A, Ramos Vicente AD, Wang Z, Hammer DA, Williams D, Chen Y, Pochan DJ, Vértesy S, André S, Klein ML, Gabius H-J, Percec V (2015c) Glycodendrimersomes from sequence-defined Janus glycodendrimers reveal high activity and sensor capacity for the agglutination by natural variants of human lectins. J Am Chem Soc 137:13334–13344

    Article  CAS  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H-J (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 87–110

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge inspiring discussions with Drs. B. Friday and A. Leddoz and the generous financial support from an ITN network grant (GLYCOPHARM, Contract No. 317297), the Science Foundation Ireland (Grant Nos. 08/SRC/B1393 and 12/IA/1398) and the Verein zur Förderung des biologisch-technologischen Fortschritts e.V. (Heidelberg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Gabius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Sabine André and Herbert Kaltner have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, S., Kaltner, H., Kayser, K. et al. Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context. Histochem Cell Biol 145, 185–199 (2016). https://doi.org/10.1007/s00418-015-1383-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1383-6

Keywords

Navigation