Skip to main content

Advertisement

Log in

Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi-Yamada T et al (1999) p38 mitogen-activated protein kinase can be involved in transforming growth factor β superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 19:2322–2329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amand TRS et al (2000) Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol 217:323–332

    Article  Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL (2001) Integrin β1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713

    Article  CAS  PubMed  Google Scholar 

  • Castellano E, Downward J (2011) RAS interaction with PI3K more than just another effector pathway. Genes Cancer 2:261–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Charles C, Lazzari V, Tafforeau P, Schimmang T, Tekin M, Klein O, Viriot L (2009) Modulation of Fgf3 dosage in mouse and men mirrors evolution of mammalian dentition. Proc Natl Acad Sci 106:22364–22368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho KW, Cho SW, Lee JM, Lee MJ, Gang HS, Jung HS (2008) Expression of phosphorylated forms of ERK, MEK, PTEN and PI3K in mouse oral development. Gene Expr Patterns 8(4):284–290

    Article  CAS  PubMed  Google Scholar 

  • Corson LB, Yamanaka Y, Lai K-MV, Rossant J (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  CAS  PubMed  Google Scholar 

  • De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  • Dong X, Shen B, Ruan N, Guan Z, Zhang Y, Chen Y, Hu X (2014) Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochem Cell Biol 142:657–665

    Article  CAS  PubMed  Google Scholar 

  • Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420

    Article  CAS  PubMed  Google Scholar 

  • Eswarakumar V, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  CAS  PubMed  Google Scholar 

  • Goetz R, Mohammadi M (2013) Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 14:166–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada H et al (2002) FGF10 maintains stem cell compartment in developing mouse incisors. Development 129:1533–1541

    CAS  PubMed  Google Scholar 

  • Hartsough MT, Mulder KM (1995) Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 270:7117–7124

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhang S, Chen G, Lin C, Huang Z, Chen Y, Zhang Y (2013) Expression of SHH signaling molecules in the developing human primary dentition. BMC Dev Biol 13:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu X, Xu S, Lin C, Zhang L, Chen Y, Zhang Y (2014) Precise chronology of differentiation of developing human primary dentition. Histochem Cell Biol 141:221–227

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Hu X, Lin C, Chen S, Huang F, Zhang Y (2014) Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Histol 45:609–617

    Article  CAS  PubMed  Google Scholar 

  • Itoh N (2007) The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30:1819–1825

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27

    Article  CAS  PubMed  Google Scholar 

  • Jernvall J, Kettunen P, Karavanova I, Martin L, Thesleff I (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38:463–469

    CAS  PubMed  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  PubMed  Google Scholar 

  • Johnson L et al (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11:2468–2481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kettunen P, Thesleff I (1998) Expression and function of FGFs-4,-8, and-9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268

    Article  CAS  PubMed  Google Scholar 

  • Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1,-2,-3, and of FGFR4; and stimulation of cell proliferation by FGF-2,-4,-8, and-9. Dev Genet 22:374–385

    Article  CAS  PubMed  Google Scholar 

  • Kettunen P, Laurikkala J, Itäranta P, Vainio S, Itoh N, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332

    Article  CAS  PubMed  Google Scholar 

  • Klein OD et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koussoulakou DS, Margaritis LH, Koussoulakos SL (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Li C-Y, Prochazka J, Goodwin AF, Klein OD (2014) Fibroblast growth factor signaling in mammalian tooth development. Odontology 102:1–13

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y, Zhang Y (2007) Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn 236:1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y (2013) FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 140:4375–4385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamada Y, Fukumoto S (2012) Review: the regulation of tooth development and morphogenesis. In: Keiichi S (ed) Interface oral health science 2011, Springer, Japan, pp 14–21

    Chapter  Google Scholar 

  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  • Pacold ME et al (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103:931–944

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287:390–402

    Article  CAS  PubMed  Google Scholar 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R (1995) The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci 92:1709–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaahtokari A, Åberg T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54:39–43

    Article  CAS  PubMed  Google Scholar 

  • Vieira A et al (2013) Candidate gene studies in hypodontia suggest role for FGF3. Eur Arch Paediatr Dent 14:405–410

    Article  CAS  PubMed  Google Scholar 

  • Wang X-P et al (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5:e159

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang B et al (2014) Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 45:487–496

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Hébert MC, Zhang YE (2002) TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21:3749–3759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YD, Chen Z, Song YQ, Chao L, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wu Y, Dai Q, Fang B, Jiang L (2013) p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem 378:19–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (81100730, 30771132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanding Zhang or Xuefeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Hu, X., Fang, C. et al. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition. Histochem Cell Biol 144, 457–469 (2015). https://doi.org/10.1007/s00418-015-1358-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1358-7

Keywords

Navigation