Skip to main content

Review: The Regulation of Tooth Development and Morphogenesis

  • Conference paper
Interface Oral Health Science 2011

Abstract

A variety of vertebrate organs, including teeth, begins their development by inductive sequential and reciprocal interactions between epithelium and mesenchyme. In tooth development, the interactions between ectodermal-derived epithelium and the cranial neural crest-derived mesenchyme regulate the shape, position, and size of the tooth crown with a functional cusp. During tooth development, many signaling molecules and transcription factors regulate tooth development and morphogenesis. Recently, we reported Epiprofin, an Sp transcription factor, is expressed during tooth development and exerts critical roles in dental epithelial differentiation and the determination of tooth number. In this review, we describe the expression pattern and functions of Epiprofin in tooth development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thesleff I, Vaahtokari A, Vainio S (1990) Molecular changes during determination and differentiation of the dental mesenchymal cell lineage. J Biol Buccale 18:179–188

    PubMed  Google Scholar 

  2. Warshawsky H, Smith CE (1974) Morphological classification of rat incisor ameloblasts. Anat Rec 179:423–446

    Article  PubMed  Google Scholar 

  3. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161

    Article  PubMed  Google Scholar 

  4. Nakamura T, Unda F, de-Vega S et al (2004) The Kruppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation. J Biol Chem 279:626–634

    Article  PubMed  Google Scholar 

  5. Philipsen S, Suske G (1999) A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27:2991–3000

    Article  PubMed  Google Scholar 

  6. Bouwman P, Philipsen S (2002) Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195:27–38

    Article  PubMed  Google Scholar 

  7. Kawakami Y, Esteban CR, Matsui T et al (2004) Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131:4763–4774

    Article  PubMed  Google Scholar 

  8. Nakamura T, de-Vega S, Fukumoto S et al (2008) Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J Biol Chem 283:4825–4833

    Article  PubMed  Google Scholar 

  9. Thesleff I, Mikkola M (2002) The role of growth factors in tooth development. Int Rev Cytol 217:93–135

    Article  PubMed  Google Scholar 

  10. Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  PubMed  Google Scholar 

  11. van Genderen C, Okamura RM, Farinas I et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703

    Article  PubMed  Google Scholar 

  12. Peters H, Neubuser A, Kratochwil K, Balling R (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12:2735–2747

    Article  PubMed  Google Scholar 

  13. Matzuk MM, Kumar TR, Vassalli A et al (1995) Functional analysis of activins during mammalian development. Nature 374:354–356

    Article  PubMed  Google Scholar 

  14. Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  PubMed  Google Scholar 

  15. Chiang C, Swan RZ, Grachtchouk M et al (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205:1–9

    Article  PubMed  Google Scholar 

  16. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    PubMed  Google Scholar 

  17. Arte S, Nieminen P, Apajalahti S et al (2001) Characteristics of incisor-premolar hypodontia in families. J Dent Res 80:1445–1450

    Article  PubMed  Google Scholar 

  18. Vastardis H (2000) The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 117:650–656

    PubMed  Google Scholar 

  19. Dermaut LR, Goeffers KR, De Smit AA (1986) Prevalence of tooth agenesis correlated with jaw relationship and dental crowding. Am J Orthod Dentofacial Orthop 90:204–210

    Article  PubMed  Google Scholar 

  20. Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13:417–421

    Article  PubMed  Google Scholar 

  21. Stockton DW, Das P, Goldenberg M, D’Souza RN, Patel PI (2000) Mutation of PAX9 is associated with oligodontia. Nat Genet 24:18–19

    Article  PubMed  Google Scholar 

  22. Ahmad W, Brancolini V, ul Faiyaz MF et al (1998) A locus for autosomal recessive hypodontia with associated dental anomalies maps to chromosome 16q12.1. Am J Hum Genet 62:987–991

    Article  PubMed  Google Scholar 

  23. Aberg T, Wang XP, Kim JH et al (2004) Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270:76–93

    Article  PubMed  Google Scholar 

  24. Bei M, Maas R (1998) FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125:4325–4333

    PubMed  Google Scholar 

  25. Mundlos S (1999) Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet 36:177–182

    PubMed  Google Scholar 

  26. Mundlos S, Otto F, Mundlos C et al (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  PubMed  Google Scholar 

  27. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  Google Scholar 

  28. Jensen BL, Kreiborg S (1990) Development of the dentition in cleidocranial dysplasia. J Oral Pathol Med 19:89–93

    Article  PubMed  Google Scholar 

  29. Kreiborg S, Jensen BL, Larsen P, Schleidt DT, Darvann T (1999) Anomalies of craniofacial skeleton and teeth in cleidocranial dysplasia. J Craniofac Genet Dev Biol 19:75–79

    PubMed  Google Scholar 

  30. Golan I, Preising M, Wagener H et al (2000) A novel missense mutation of the CBFA1 gene in a family with cleidocranial dysplasia (CCD) and variable expressivity. J Craniofac Genet Dev Biol 20:113–120

    PubMed  Google Scholar 

  31. Klein OD, Minowada G, Peterkova R et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190

    Article  PubMed  Google Scholar 

  32. Mikkola ML, Thesleff I (2003) Ectodysplasin signaling in development. Cytokine Growth Factor Rev 14:211–224

    Article  PubMed  Google Scholar 

  33. Mustonen T, Pispa J, Mikkola ML et al (2003) Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol 259:123–136

    Article  PubMed  Google Scholar 

  34. Mustonen T, Ilmonen M, Pummila M et al (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131:4907–4919

    Article  PubMed  Google Scholar 

  35. Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT (2004) The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol 268:185–194

    Article  PubMed  Google Scholar 

  36. Pummila M, Fliniaux I, Jaatinen R et al (2007) Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134:117–125

    Article  PubMed  Google Scholar 

  37. Jarvinen E, Salazar-Ciudad I, Birchmeier W et al (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 103:18627–18632

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Nakamura, T., Yamada, Y., Fukumoto, S. (2012). Review: The Regulation of Tooth Development and Morphogenesis. In: Sasaki, K., Suzuki, O., Takahashi, N. (eds) Interface Oral Health Science 2011. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54070-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54070-0_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54069-4

  • Online ISBN: 978-4-431-54070-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics