Skip to main content
Log in

Analysis of aquaporin expression in liver with a focus on hepatocytes

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A deeper understanding of aquaporins (AQPs) expression and transcriptional regulation will provide useful information for liver pathophysiology. We established a complete AQPs mRNA expression profile in human and mouse liver, as well as protein localization of expressed AQPs. Additionally, the modulation of AQPs mRNA levels in response to various agents was determined in human HuH7 cells and in primary culture of mouse hepatocytes. AQP1, AQP3, AQP7, AQP8, and AQP9 mRNA and protein expressions were detected in human liver, while only AQP6 and AQP11 mRNAs were detected. We reported for the first time the localization of AQP3 in Kupffer cells, AQP7 in hepatocytes and endothelial cells, and AQP9 in cholangiocytes. In addition, we confirmed the localization of AQP1 in endothelial cells, and of AQP8 and AQP9 in hepatocytes. On HuH7 cells, we reported the presence of AQP4 mRNA, confirmed the presence of AQP3, AQP7, and AQP11 mRNAs, but not of AQP8 mRNA. On primary culture of murine hepatocytes, AQP1 and AQP7 mRNAs were identified, while the presence of AQP3, AQP8, AQP9, and AQP11 mRNAs was confirmed. At the protein level, murine endothelial liver cells expressed AQP1 and AQP9, while hepatocytes expressed AQP3, AQP7, AQP8, and AQP9, and macrophages expressed AQP3. Dexamethasone, forskolin, AICAR, rosiglitazone, octanoylated, and non-octanoylated ghrelin regulated some AQP expression in primary culture of murine hepatocytes and human HuH7 cells. Additional studies will be required to further assess the role of AQPs expression in human and murine liver and understand the transcriptional regulation of AQPs in hepatocytes under pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AICAR:

Aminoimidazole carboxamide ribonucleotide

AMPK:

5′ Adenosine monophosphate-activated protein kinase

AQP:

Aquaporin

cAMP:

Cyclic cyclic adenosine monophosphate

FK:

Forskolin

GNO:

Non-octanoylated ghrelin

GO:

Octanoyalted ghrelin

References

  • Agre P (2004) Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 43(33):4278–4290

    Article  CAS  PubMed  Google Scholar 

  • Arsenijevic T, Gregoire F, Delforge V, Delporte C, Perret J (2012) Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. PLoS ONE 7:e37517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asai M, Higuchi S, Kubota M, Iguchi K, Usui S, Hirano K (2006) Regulators for blood glucose level affect gene expression of aquaporin 3. Biol Pharm Bull 29:991–996

    Article  CAS  PubMed  Google Scholar 

  • Aure MH, Ruus AK, Galtung HK (2014) Aquaporins in the adult mouse submandibular and sublingual salivary glands. J Mol Histol 45:69–80

    Article  CAS  PubMed  Google Scholar 

  • Barazzoni R, Bosutti A, Stebel M, Cattin MR, Roder E, Visintin L, Cattin L, Biolo G, Zanetti M, Guarnieri G (2005a) Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol 288:E228–E235

    CAS  Google Scholar 

  • Barazzoni R, Zanetti M, Biolo G, Guarnieri G (2005b) Metabolic effects of ghrelin and its potential implications in uremia. J Ren Nutr 15:111–115

    Article  PubMed  Google Scholar 

  • Boltjes A, Movita D, Boonstra A, Woltman AM (2014) The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 61(3):660–671

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711–719

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005a) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Ferri D, Gena P, Liquori GE, Marinelli RA, Meyer G, Portincasa P, Svelto M (2005b) Water transport into bile and role in bile formation. Curr Drug Targets Immune Endocr Metabol Disord 5:137–142

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Gena P, Meleleo D, Ferri D, Svelto M (2006) Water permeability of rat liver mitochondria: a biophysical study. Biochim Biophys Acta 1758:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Calamita G, Ferri D, Gena P, Carreras FI, Liquori GE, Portincasa P, Marinelli RA, Svelto M (2008) Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am J Physiol Gastrointest 295:G682–G690

    Article  CAS  Google Scholar 

  • Calamita G, Gena P, Ferri D, Rosito A, Rojek A, Nielsen S, Marinelli RA, Fruhbeck G, Svelto M (2012) Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol Cell 104:342–351

    Article  CAS  PubMed  Google Scholar 

  • Caperna TJ, Shannon AE, Richards MP, Garrett WM, Talbot NC (2007) Identification and characterization of aquaporin-9 (AQP9) in porcine hepatic tissue and hepatocytes in monolayer culture. Domest Anim Endocrinol 32:273–286

    Article  CAS  PubMed  Google Scholar 

  • Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vriese C, Delporte C (2007) Autocrine proliferative effect of ghrelin on leukemic HL-60 and THP-1 cells. J Endocrinol 192:199–205

    Article  PubMed  CAS  Google Scholar 

  • De Vriese C, Gregoire F, De Neef P, Robberecht P, Delporte C (2005) Ghrelin is produced by the human erythroleukemic HEL cell line and involved in an autocrine pathway leading to cell proliferation. Endocrinology 146:1514–1522. doi:10.1210/en.2004-0964

    Article  PubMed  CAS  Google Scholar 

  • Delporte C (2012) Recent advances in potential clinical application of ghrelin in obesity. J Obes 2012:535624

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delporte C (2013) Structure and physiological actions of ghrelin. Scientifica 2013:518909

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dong C, Wang G, Li B, Xiao K, Ma Z, Huang H, Wang X, Bai C (2012) Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma. Respir Physiol Neurobiol 181:21–28

    Article  CAS  PubMed  Google Scholar 

  • Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol 281:F1047–F1057

    CAS  Google Scholar 

  • Ferri D, Mazzone A, Liquori GE, Cassano G, Svelto M, Calamita G (2003) Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 38:947–957

    Article  CAS  PubMed  Google Scholar 

  • Fruci B, Giuliano S, Mazza A, Malaguarnera R, Belfiore A (2013) Nonalcoholic fatty liver: a possible new target for type 2 diabetes prevention and treatment. Int J Mol Sci 14:22933–22966

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fukushima M, Kitahara T, Fuse Y, Uno Y, Doot K, Kubo T (2004) Changes in aquaporin expression in the inner ear of the rat after i.p. injection of steroids. Acta Otolaryngol Suppl 553:13–18

    Article  CAS  PubMed  Google Scholar 

  • Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, Marinelli RA (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276:12147–12152

    Article  CAS  PubMed  Google Scholar 

  • Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V (2013) p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab 1:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Gradilone SA, Garcia F, Huebert RC, Tietz PS, Larocca MC, Kierbel A, Carreras FI, Larusso NF, Marinelli RA (2003) Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology 37:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Gradilone SA, Carreras FI, Lehmann GL, Marinelli RA (2005) Phosphoinositide 3-kinase is involved in the glucagon-induced translocation of aquaporin-8 to hepatocyte plasma membrane. Biol Cell 97:831–836

    Article  CAS  PubMed  Google Scholar 

  • Gu LY, Qiu LW, Chen XF, Lu L, Mei ZC (2014) Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling. Horm Metab Res. doi:10.1055/s-0034-1384569

    PubMed  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2006) Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17:39–45

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Hasenour CM, Berglund ED, Wasserman DH (2013) Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol Cell Endocrinol 366:152–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi Y, Edwards NA, Proescholdt MA, Oldfield EH, Merrill MJ (2007) Regulation and function of aquaporin-1 in glioma cells. Neoplasia 9:777–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huebert RC, Splinter PL, Garcia F, Marinelli RA, LaRusso NF (2002) Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J Biol Chem 277:22710–22717

    Article  CAS  PubMed  Google Scholar 

  • Huebert RC, Jagavelu K, Hendrickson HI, Vasdev MM, Arab JP, Splinter PL, Trussoni CE, Larusso NF, Shah VH (2011) Aquaporin-1 promotes angiogenesis, fibrosis, and portal hypertension through mechanisms dependent on osmotically sensitive microRNAs. Am J Pathol 179:1851–1860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hung KC, Hsieh PM, Hsu CY, Lin CW, Feng GM, Chen YS, Hung CH (2012) Expression of aquaporins in rat liver regeneration. Scand J Gastroenterol 47:676–685

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840:1507–1512

    Article  CAS  PubMed  Google Scholar 

  • Itoh A, Tsujikawa T, Fujiyama Y, Bamba T (2003) Enhancement of aquaporin-3 by vasoactive intestinal polypeptide in a human colonic epithelial cell line. J Gastroenterol Hepatol 18:203–210

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Kim P, Lu YF, Feingold KR (2011) PPARgamma activators stimulate aquaporin 3 expression in keratinocytes/epidermis. Exp Dermatol 20:595–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, Maeda N, Matsuda M, Ouchi N, Kihara S, Kurachi Y, Funahashi T, Matsuzawa Y (2001) Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem 276:36251–36260

    Article  CAS  PubMed  Google Scholar 

  • Kitahara T, Fukushima M, Uno Y, Mishiro Y, Kubo T (2003) Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurol Res 25:865–870

    Article  CAS  PubMed  Google Scholar 

  • Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, Williams LM, Hawley SA, Hardie DG, Grossman AB, Korbonits M (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201

    Article  CAS  PubMed  Google Scholar 

  • Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y (2002) Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51:2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Lebeck J, Ostergard T, Rojek A, Fuchtbauer EM, Lund S, Nielsen S, Praetorius J (2012) Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue. Acta Diabetol 49(Suppl 1):S215–S226

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Park DB, Lee YK, An CS, Oh YS, Kang JS, Kang SH, Chung MY (2005) The effects of thiazolidinedione treatment on the regulations of aquaglyceroporins and glycerol kinase in OLETF rats. Metabolism 54:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li H, Nomura K, Ohtake K, Kitagawa T (1992) Frequent spontaneous sister chromatid exchange in hepatocytes of transgenic mice harboring the SV40-T antigen gene. J Cancer Res Clin Oncol 118:601–605

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lytle C, Tod TJ, Vo KT, Lee JW, Atkinson RD, Straus DS (2005) The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 11:231–243

    Article  PubMed  Google Scholar 

  • Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J, Bastidas JA, Verkman AS (2001) Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am J Physiol 280:C126–C134

    CAS  Google Scholar 

  • Maeda N (2012) Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Mol Aspects Med 33:665–675

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Hibuse T, Funahashi T (2009) Role of aquaporin-7 and aquaporin-9 in glycerol metabolism; involvement in obesity. Handb Exp Pharmacol 190:233–249

    Article  CAS  PubMed  Google Scholar 

  • Marchissio MJ, Frances DE, Carnovale CE, Marinelli RA (2012) Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 264:246–254

    Article  CAS  PubMed  Google Scholar 

  • Marinelli RA, LaRusso NF (1997) Aquaporin water channels in liver: their significance in bile formation. Hepatology 26:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984–12988

    Article  CAS  PubMed  Google Scholar 

  • Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 276:G280–G286

    CAS  PubMed  Google Scholar 

  • Maruthur NM, Gribble MO, Bennett WL, Bolen S, Wilson LM, Balakrishnan P, Sahu A, Bass E, Kao WH, Clark JM (2014) The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care 37:876–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masyuk AI, LaRusso NF (2006) Aquaporins in the hepatobiliary system. Hepatology 43:S75–S81

    Article  CAS  PubMed  Google Scholar 

  • Masyuk AI, Gong AY, Kip S, Burke MJ, LaRusso NF (2000) Perfused rat intrahepatic bile ducts secrete and absorb water, solute, and ions. Gastroenterology 119:1672–1680

    Article  CAS  PubMed  Google Scholar 

  • Masyuk AI, Masyuk TV, Tietz PS, Splinter PL, LaRusso NF (2002) Intrahepatic bile ducts transport water in response to absorbed glucose. Am J Physiol 283:C785–C791

    Article  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867

    CAS  PubMed  Google Scholar 

  • Mennone A, Verkman AS, Boyer JL (2002) Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice. Am J Physiol 283:G739–G746

    CAS  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nihei K, Koyama Y, Tani T, Yaoita E, Ohshiro K, Adhikary LP, Kurosaki I, Shirai Y, Hatakeyama K, Yamamoto T (2001) Immunolocalization of aquaporin-9 in rat hepatocytes and Leydig cells. Arch Histol Cytol 64:81–88

    Article  CAS  PubMed  Google Scholar 

  • Olszewska M, Bujarski JJ, Kurpisz M (2012) P-bodies and their functions during mRNA cell cycle: mini-review. Cell Biochem Funct 30:177–182

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patsouris D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM, Koenig W, Marz W, Tafuri S, Wahli W, Muller M, Kersten S (2004) PPARalpha governs glycerol metabolism. J Clin Invest 114:94–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poling HM, Mohanty SK, Tiao GM, Huppert SS (2014) A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes. Gene Expr Patterns 15:96–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Portincasa P, Calamita G (2012) Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 33:651–664

    Article  CAS  PubMed  Google Scholar 

  • Rabolli V, Wallemme L, Lo Re S, Uwambayinema F, Palmai-Pallag M, Thomassen L, Tyteca D, Octave JN, Marbaix E, Lison D, Devuyst O, Huaux F (2014) Critical role of aquaporins in interleukin 1beta (IL-1beta)-induced inflammation. J Biol Chem 289:13937–13947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez A, Catalan V, Gomez-Ambrosi J, Garcia-Navarro S, Rotellar F, Valenti V, Silva C, Gil MJ, Salvador J, Burrell MA, Calamita G, Malagon MM, Fruhbeck G (2011) Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3 K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab 96:596–597

    Google Scholar 

  • Rodríguez A, Gena P, Méndez-Giménez L, Rosito A, Valentí V, Rotellar F, Sola I, Moncada R, Silva C, Svelto M, Salvador J, Calamita G, Frühbeck G (2014) Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes 38:1213–1220

    Article  CAS  Google Scholar 

  • Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A 104:3609–3614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojek A, Fuchtbauer EM, Fuchtbauer A, Jelen S, Malmendal A, Fenton RA, Nielsen S (2013) Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. Am J Physiol 304:G501–G515

    CAS  Google Scholar 

  • Rump K, Brendt P, Frey UH, Schafer ST, Siffert W, Peters J, Adamzik M (2013) Aquaporin 1 and 5 expression evoked by the beta2 adrenoreceptor agonist terbutaline and lipopolysaccharide in mice and in the human monocytic cell line THP-1 is differentially regulated. Shock 40:430–436

    Article  CAS  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005a) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  CAS  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005b) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    Article  CAS  PubMed  Google Scholar 

  • Salt I, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, Hardie DG (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J 334:177–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  • Shinkai Y, Sumi D, Toyama T, Kaji T, Kumagai Y (2009) Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicol Appl Pharmacol 237:232–236

    Article  CAS  PubMed  Google Scholar 

  • Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  • Soria LR, Marrone J, Calamita G, Marinelli RA (2013) Ammonia detoxification via ureagenesis in rat hepatocytes involves mitochondrial aquaporin-8 channels. Hepatology 57:2061–2071

    Article  CAS  PubMed  Google Scholar 

  • Splinter PL, Masyuk AI, LaRusso NF (2003) Specific inhibition of AQP1 water channels in isolated rat intrahepatic bile duct units by small interfering RNAs. J Biol Chem 278:6268–6274

    Article  CAS  PubMed  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271:611–614

    Article  CAS  PubMed  Google Scholar 

  • Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  CAS  PubMed  Google Scholar 

  • Talbot NC, Garrett WM, Caperna TJ (2003) Analysis of the expression of aquaporin-1 and aquaporin-9 in pig liver tissue: comparison with rat liver tissue. Cells Tissues Organs 174:117–128

    Article  CAS  PubMed  Google Scholar 

  • Tietz PS, Marinelli RA, Chen XM, Huang B, Cohn J, Kole J, McNiven MA, Alper S, LaRusso NF (2003) Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J Biol Chem 278:20413–20419

    Article  CAS  PubMed  Google Scholar 

  • Tietz P, Jefferson J, Pagano R, Larusso NF (2005) Membrane microdomains in hepatocytes: potential target areas for proteins involved in canalicular bile secretion. J Lipid Res 46:1426–1432

    Article  CAS  PubMed  Google Scholar 

  • Tran ND, Kim S, Vincent HK, Rodriguez A, Hinton DR, Bullock MR, Young HF (2010) Aquaporin-1-mediated cerebral edema following traumatic brain injury: effects of acidosis and corticosteroid administration. J Neurosurg 112:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Tyteca D, Nishino T, Debaix H, Van Der Smissen P, N’Kuli F, Hoffmann D, Cnops Y, Rabolli V, van Loo G, Beyaert R, Huaux F, Devuyst O, Courtoy PJ (2015) Regulation of macrophage motility by the water channel aquaporin-1: crucial role of m0/m2 phenotype switch. PLoS ONE 10:e0117398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ueno Y, Alpini G, Yahagi K, Kanno N, Moritoki Y, Fukushima K, Glaser S, LeSage G, Shimosegawa T (2003) Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int 23:449–459

    Article  CAS  PubMed  Google Scholar 

  • van Erpecum KJ, Wang DQ, Moschetta A, Ferri D, Svelto M, Portincasa P, Hendrickx JJ, Schipper M, Calamita G (2006) Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function. J Lipid Res 47:32–41

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

  • Verbavatz JM, Brown D, Sabolic I, Valenti G, Ausiello DA, Van Hoek AN, Ma T, Verkman AS (1993) Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 123:605–618

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng M (2011) Nuclear factor kappa B pathway down-regulates aquaporin 5 in the nasal mucosa of rats with allergic rhinitis. Eur Arch Otorhinolaryngol 268:73–81

    Article  PubMed  Google Scholar 

  • Xiong X, Miao J, Xi Z, Zhang H, Han B, Hu Y (2005) Regulatory effect of dexamethasone on aquaporin-1 expression in cultured bovine trabecular meshwork cells. J Huazhong Univ Sci Technol Med Sci 25:735–737

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol 288:C1161–C1170

    Article  CAS  Google Scholar 

  • Yang B, Zhao D, Solenov E, Verkman AS (2006) Evidence from knockout mice against physiologically significant aquaporin 8-facilitated ammonia transport. Am J Physiol 291:C417–C423

    Article  CAS  Google Scholar 

  • Yokomori H, Oda M, Yoshimura K, Kaneko F, Hibi T (2011) Aquaporin-1 associated with hepatic arterial capillary proliferation on hepatic sinusoid in human cirrhotic liver. Liver Int 31:1554–1564

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama Y, Iguchi K, Usui S, Hirano K (2011) AMP-activated protein kinase modulates the gene expression of aquaporin 9 via forkhead box a2. Arch Biochem Biophys 515:80–88

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Feng X, He C, Gao H, Yang L, Ma Q, Guo L, Qiao Y, Yang H, Ma T (2011) Defective macrophage function in aquaporin-3 deficiency. FASEB J 25:4233–4239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 3.4543.10 from the Fund for Medical Scientific Research (FRSM) (Belgium), the Defay Fund, and David and Alice van Buuren Foundation. A.Z.-S. was a recipient of a FNRS fellowship (FNRS, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Delporte.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethical Committee of the Erasme Hospital and with the Declaration of Helsinki and its later amendments or comparable ethical standards. All applicable national and institutional guidelines for the care and use of animals were followed.

Additional information

Françoise Gregoire, Valério Lucidi, and Christine Delporte have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregoire, F., Lucidi, V., Zerrad-Saadi, A. et al. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 144, 347–363 (2015). https://doi.org/10.1007/s00418-015-1341-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1341-3

Keywords

Navigation