Skip to main content
Log in

Spatiotemporal expression of Math6 during mouse embryonic development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The basic helix-loop-helix transcription factor Math6 was shown to have important regulatory functions during many developmental events. However, a systematic description of Math6 expression during mouse embryonic development is up to now still lacking. We carried out this study to show Math6 expression at different stages of mouse embryonic development aiming to provide a wide insight into the regulatory functions during the mouse organogenesis. Using immunohistochemistry, we could show that Math6 expression is activated in the inner cell mass at the blastocyst stage and in the neural tube as well as somatic and splanchnic mesoderm at stage E8.5. At stages E8.5 and E10.5, Math6 transcripts were detected in the myotome, neural tube, pharyngeal arches, foregut and heart. At stages E11.5 and E12.5, Math6 transcripts were accumulated in the developing brain, heart, limb buds and liver. The heterozygous transgenic mouse embryos carrying EGFP–Cre under the Math6 promoter were used to analyze Math6 expression at later stages by means of immunohistochemistry against EGFP protein. EGFP was observed in the neural tube, heart, lung, skeletal muscle, skin, cartilage, trachea and aorta. We have observed Math6 expression in various organs at early and late stages of mouse development, which illustrates the involvement of Math6 in multiple developmental events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balakrishnan-Renuka A, Morosan-Puopolo G, Yusuf F, Abduelmula A, Chen J, Zoidl G, Philippi S, Dai F, Brand-Saberi B (2014) ATOH8, a regulator of skeletal myogenesis in the hypaxial myotome of the trunk. Histochem Cell Biol 141:289–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betschinger J, Nichols J, Dietmann S, Corrin PD, Paddison PJ, Smith A (2013) Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153:335–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Dai F, Balakrishnan-Renuka A, Leese F, Schempp W, Schaller F, Hoffmann MM, Morosan-Puopolo G, Yusuf F, Bisschoff IJ, Chankiewitz V, Xue J, Ying K, Brand-Saberi B (2011) Diversification and molecular evolution of ATOH8, a gene encoding a bHLH transcription factor. PLoS One 6:e23005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conner DA (2001) Mouse embryo fibroblast (MEF) feeder cell preparation. Curr Protoc Mol Biol Chapter 23, Unit 23 2

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Guttsches AK, Balakrishnan-Renuka A, Kley RA, Tegenthoff M, Brand-Saberi B, Vorgerd M (2014) ATOH8: a novel marker in human muscle fiber regeneration. Histochem Cell Biol. doi:10.1007/s00418-014-1299-6

  • Inoue C, Bae SK, Takatsuka K, Inoue T, Bessho Y, Kageyama R (2001) Math6, a bHLH gene expressed in the developing nervous system, regulates neuronal versus glial differentiation. Genes Cells 6:977–986

    Article  CAS  PubMed  Google Scholar 

  • Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Scholer H, Niemann H (2000) Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63:1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Kubo F, Nakagawa S (2010) Cath6, a bHLH atonal family proneural gene, negatively regulates neuronal differentiation in the retina. Dev Dyn 239:2492–2500

    Article  CAS  PubMed  Google Scholar 

  • Lynn FC, Sanchez L, Gomis R, German MS, Gasa R (2008) Identification of the bHLH factor Math6 as a novel component of the embryonic pancreas transcriptional network. PLoS One 3:e2430

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

    Article  CAS  PubMed  Google Scholar 

  • Niwa H (2010) Mouse ES cell culture system as a model of development. Dev Growth Differ 52:275–283

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Rawnsley DR, Xiao J, Lee JS, Liu X, Mericko-Ishizuka P, Kumar V, He J, Basu A, Lu M, Lynn FC, Pack M, Gasa R, Kahn ML (2013) The transcription factor Atonal homolog 8 regulates Gata4 and Friend of Gata-2 during vertebrate development. J Biol Chem 288:24429–24440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross MD, Martinka S, Mukherjee A, Sedor JR, Vinson C, Bruggeman LA (2006) Math6 expression during kidney development and altered expression in a mouse model of glomerulosclerosis. Dev Dyn 235:3102–3109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skinner MK, Rawls A, Wilson-Rawls J, Roalson EH (2010) Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation 80:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skoog T, Ohlsén L, Sohn SA (1975) The chondrogenic potential of the perichondrium. Chir Plast (Berl) 3:91–103

    Google Scholar 

  • Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 7:319–327

    Article  CAS  PubMed  Google Scholar 

  • Wobus AM, Guan K, Yang HT, Boheler KR (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 185:127–156

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Rosa Gasa (Universitat de Barcelona) for providing the heterozygous Math6-knockout mice and Prof. Ulrich Rüther (Heinrich Heine Universität Düsseldorf) for providing the mouse R1 ES cells. We appreciate sincerely for the excellent technical work done by Mrs. E. Konieczny, Mrs. R. Houmany, Mrs. S. Wulf and Mrs. Ch. Klar.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Brand-Saberi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Balakrishnan-Renuka, A., Napirei, M. et al. Spatiotemporal expression of Math6 during mouse embryonic development. Histochem Cell Biol 143, 575–582 (2015). https://doi.org/10.1007/s00418-014-1305-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1305-z

Keywords

Navigation