Skip to main content
Log in

Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The small intestinal brush border is a specialized cell membrane that needs to withstand the solubilizing effect of bile salts during assimilation of dietary nutrients and to achieve detergent resistance; it is highly enriched in glycolipids organized in lipid raft microdomains. In the present work, the fluorescent lipophilic probes FM 1–43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide), FM 4–64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl)hexatrienyl)pyridinium dibromide), TMA-DPH (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate), and CellMask Orange plasma membrane stain were used to study endocytosis from the enterocyte brush border of organ-cultured porcine mucosal explants. All the dyes readily incorporated into the brush border but were not detectably endocytosed by 5 min, indicating a slow uptake compared with other cell types. At later time points, FM 1–43 clearly appeared in distinct punctae in the terminal web region, previously shown to represent early endosomes (TWEEs). In contrast, the other dyes were relatively “endocytosis resistant” to varying degrees for periods up to 2 h, indicating an active sorting of lipids in the brush border prior to internalization. For some of the dyes, a diphenylhexatriene motif in the lipophilic tail seemed to confer the relative endocytosis resistance. Lipid sorting by selective endocytosis therefore may be a process in the enterocytes aimed to generate and maintain a unique lipid composition in the brush border.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alessandri JM, Arfi TS, Thieulin C (1990) The mucosa of the small intestine: development of the cellular lipid composition during enterocyte differentiation and postnatal maturation. Reprod Nutr Dev 30:551–576

    Article  CAS  PubMed  Google Scholar 

  • Apodaca G, Gallo LI, Bryant DM (2012) Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol 14:1235–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth AG, Kenny AJ (1974) A rapid method for the preparation of microvilli from rabbit kidney. Biochem J 142:575–581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brasitus TA, Schachter D (1984) Lipid composition and fluidity of rat enterocyte basolateral membranes. Regional differences. Biochim Biophys Acta 774:138–146

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Carmosino M, Valenti G, Caplan M, Svelto M (2010) Polarized traffic towards the cell surface: how to find the route. Biol Cell 102:75–91

    Article  CAS  Google Scholar 

  • Catalioto RM, Maggi CA, Giuliani S (2011) Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr Med Chem 18:398–426

    Article  CAS  PubMed  Google Scholar 

  • Christiansen K, Carlsen J (1981) Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta 647:188–195

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34:1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23:71–79

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2008) Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64:377–382

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2013) Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane. PLoS ONE 8:e76661

    Article  PubMed Central  PubMed  Google Scholar 

  • Danielsen EM, Sjostrom H, Noren O, Bro B, Dabelsteen E (1982) Biosynthesis of intestinal microvillar proteins. Characterization of intestinal explants in organ culture and evidence for the existence of pro-forms of the microvillar enzymes. Biochem J 202:647–654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH, Severinsen MC (2014) Okadaic acid: A rapid inducer of lamellar bodies in small intestinal enterocytes. Toxicon

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  CAS  PubMed  Google Scholar 

  • Florine-Casteel K, Feigenson GW (1988) On the use of partition coefficients to characterize the distribution of fluorescent membrane probes between coexisting gel and fluid lipid phase: an analysis of the partition behavior of 1,6-diphenyl-1,3,5-hexatriene. Biochim Biophys Acta 941:102–106

    Article  CAS  PubMed  Google Scholar 

  • Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36:1472–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gidwani A, Holowka D, Baird B (2001) Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry 40:12422–12429

    Article  CAS  PubMed  Google Scholar 

  • Golachowska MR, Hoekstra D, Van IJzendoorn SC (2010) Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 20:618–626

    Article  CAS  PubMed  Google Scholar 

  • Hagerstrand H, Mrowczynska L, Salzer U, Prohaska R, Michelsen KA, Kralj-Iglic V, Iglic A (2006) Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membr Biol 23:277–288

    Article  PubMed  Google Scholar 

  • Hanani M (2012) Lucifer yellow—an angel rather than the devil. J Cell Mol Med 16:22–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen GH, Sjostrom H, Noren O, Dabelsteen E (1987) Immunomicroscopic localization of aminopeptidase N in the pig enterocyte. Implications for the route of intracellular transport. Eur J Cell Biol 43:253–259

    CAS  PubMed  Google Scholar 

  • Hansen GH, Pedersen J, Niels-Christiansen LL, Immerdal L, Danielsen EM (2003) Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes. Biochem J 373:125–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen GH, Dalskov SM, Rasmussen CR, Immerdal L, Niels-Christiansen LL, Danielsen EM (2005) Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism. Biochemistry 44:873–882

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol Gastrointest Liver Physiol 297:G708–G715

    Article  CAS  PubMed  Google Scholar 

  • Hull BE, Staehelin LA (1979) The terminal web. A reevaluation of its structure and function. J Cell Biol 81:67–82

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296:E1183–E1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser RD, London E (1998) Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190

    Article  CAS  PubMed  Google Scholar 

  • Kenny AJ, Booth AG (1978) Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem 14:1–44

    CAS  PubMed  Google Scholar 

  • Kenny AJ, Maroux S (1982) Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev 62:91–128

    CAS  PubMed  Google Scholar 

  • Klose C, Surma MA, Simons K (2013) Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 25:406–413

    Article  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. Chem Biol 21:97–113

    Article  CAS  PubMed  Google Scholar 

  • Kunding AH, Christensen SM, Danielsen EM, Hansen GH (2010) Domains of increased thickness in microvillar membranes of the small intestinal enterocyte. Mol Membr Biol 27:170–177

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lentz BR, Barenholz Y, Thompson TE (1976) Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry 15:4529–4537

    Article  CAS  PubMed  Google Scholar 

  • Louvard D, Kedinger M, Hauri HP (1992) The differentiating intestinal epithelial cell: establishment and maintenance of functions through interactions between cellular structures. Annu Rev Cell Biol 8:157–195

    Article  CAS  PubMed  Google Scholar 

  • Mayor S, Parton RG, Donaldson JG (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6

  • Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mooseker MS, Tilney LG (1975) Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67:725–743

    Article  CAS  PubMed  Google Scholar 

  • Morita A, Siddiqui B, Erickson RH, Kim YS (1989) Glycoproteins and glycolipids of rat small intestinal microvillus and basolateral membranes. Dig Dis Sci 34:596–605

    Article  CAS  PubMed  Google Scholar 

  • Noah TK, Donahue B, Shroyer NF (2011) Intestinal development and differentiation. Exp Cell Res 317:2702–2710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 11:1075–1083

    Article  PubMed Central  PubMed  Google Scholar 

  • Pagano RE, Chen CS (1998) Use of BODIPY-labeled sphingolipids to study membrane traffic along the endocytic pathway. Ann N Y Acad Sci 845:152–160

    Article  CAS  PubMed  Google Scholar 

  • Rodewald R, Kraehenbuhl JP (1984) Receptor-mediated transport of IgG. J Cell Biol 99:159s–164s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22:140–146

    Article  PubMed  Google Scholar 

  • Sandvig K, Pust S, Skotland T, van Deurs B (2011) Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 23:413–420

    Article  CAS  PubMed  Google Scholar 

  • Schwarz SM, Bostwick HE, Danziger MD, Newman LJ, Medow MS (1989) Ontogeny of basolateral membrane lipid composition and fluidity in small intestine. Am J Physiol 257:G138–G144

    CAS  PubMed  Google Scholar 

  • Semenza G (1986) Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2:255–313

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinha M, Mishra S, Joshi PG (2003) Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study. Eur Biophys J 32:381–391

    Article  CAS  PubMed  Google Scholar 

  • Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost J, Goud B, Bassereau P (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci U S A 106:5622–5626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinman RM, Brodie SE, Cohn ZA (1976) Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol 68:665–687

    Article  CAS  PubMed  Google Scholar 

  • Surma MA, Klose C, Simons K (2012) Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta 1821:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Trier JS (1968) Morphology of the epithelium of the small intestine. Code C.F. Handbook of Physiology—alimentary canal. 6:1125–1176. Washington, American Physiological Society

  • Weber K, Glenney JR Jr (1982) Microfilament-membrane interaction: the brush border of intestinal epithelial cells as a model. Philos Trans R Soc Lond B Biol Sci 299:207–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Karina Rasmussen and Lise-Lotte Niels-Christiansen are thanked for excellent technical assistance, and Dr. Gert Hansen for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Danielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielsen, E.M. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochem Cell Biol 143, 545–556 (2015). https://doi.org/10.1007/s00418-014-1302-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1302-2

Keywords

Navigation