Skip to main content

Endocytosis Assays Using Cleavable Fluorescent Dyes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

Abstract

Endocytosis mediates the entry of surface and extracellular cargoes into the cell. In this chapter, we describe assays to quantitively measure the endocytosis of both soluble and transmembrane cargo proteins, taking advantage of cleavable fluorescent dyes labeling cargo proteins or antibodies recognizing cargo proteins. After removing surface-bound fluorescent dye, internalized cargoes are measured using confocal imaging and flow cytometry. We also describe strategies to determine the role of clathrin-mediated endocytosis (CME) in the internalization of a cargo by using a small molecule inhibitor of CME and knockout (KO) of the AAGAB gene, which encodes an essential regulator of CME.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533. https://doi.org/10.1038/nrm3151

    Article  CAS  PubMed  Google Scholar 

  2. Haucke V (2006) Cargo takes control of endocytosis. Cell 127(1):35–37. https://doi.org/10.1016/j.cell.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  3. Traub LM, Bonifacino JS (2013) Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 5(11):a016790. https://doi.org/10.1101/cshperspect.a016790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL (2018) Regulation of Clathrin-mediated endocytosis. Annu Rev Biochem 87:871–896. https://doi.org/10.1146/annurev-biochem-062917-012644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326. https://doi.org/10.1038/nrm.2017.132

    Article  CAS  PubMed  Google Scholar 

  6. Wood LA, Larocque G, Clarke NI, Sarkar S, Royle SJ (2017) New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision. Int J Cell Biol 216(12):4351–4365. https://doi.org/10.1083/jcb.201702188

    Article  CAS  Google Scholar 

  7. Kelly BT, McCoy AJ, Späte K, Miller SE, Evans PR, Höning S, Owen DJ (2008) A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456(7224):976–979. https://doi.org/10.1038/nature07422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gulbranson DR, Crisman L, Lee M, Ouyang Y, Menasche BL, Demmitt BA, Wan C, Nomura T, Ye Y, Yu H, Shen J (2019) AAGAB controls AP2 adaptor assembly in Clathrin-mediated endocytosis. Dev Cell 50(4):436–446 e435. https://doi.org/10.1016/j.devcel.2019.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamei N, Yamamoto S, Hashimoto H, Nishii M, Miyaura M, Tomada K, Nakase I, Takeda-Morishita M (2019) Optimization of the method for analyzing endocytosis of fluorescently tagged molecules: impact of incubation in the cell culture medium and cell surface wash with glycine-hydrochloric acid buffer. J Control Release 310:127–140. https://doi.org/10.1016/j.jconrel.2019.08.020

    Article  CAS  PubMed  Google Scholar 

  10. Bitsikas V, Corrêa IR Jr, Nichols BJ (2014) Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3:e03970. https://doi.org/10.7554/eLife.03970

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tobys D, Kowalski LM, Cziudaj E, Muller S, Zentis P, Pach E, Zigrino P, Blaeske T, Honing S (2020) Inhibition of clathrin-mediated endocytosis by knockdown of AP-2 leads to alterations in the plasma membrane proteome. Traffic 22(1-2):6–22. https://doi.org/10.1111/tra.12770

    Article  CAS  PubMed  Google Scholar 

  12. Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochim Biophys Acta 1820:264–281. https://doi.org/10.1016/j.bbagen.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Ishikawa Y, Tacheva-Grigorova SK, Maeda M, Aguet F, Lee S-U, Ericsson M, Kirchhausen T, Maeda T (2013) Cellular mechanisms for transferrin receptor endocytosis vital for terminal erythroid differentiation. Blood 122(21):3434. https://doi.org/10.1182/blood.V122.21.3434.3434

    Article  Google Scholar 

  14. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. Int J Cell Biol 97(2):329–339. https://doi.org/10.1083/jcb.97.2.329

    Article  CAS  Google Scholar 

  15. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3(4):267–277

    Article  CAS  Google Scholar 

  16. Elkin SR, Oswald NW, Reed DK, Mettlen M, MacMillan JB, Schmid SL (2016) Ikarugamycin: a natural product inhibitor of Clathrin-mediated endocytosis. Traffic 17(10):1139–1149. https://doi.org/10.1111/tra.12425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gulbranson DR, Davis EM, Demmitt BA, Ouyang Y, Ye Y, Yu H, Shen J (2017) RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proc Natl Acad Sci U S A 114(39):E8224–E8233. https://doi.org/10.1073/pnas.1712176114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Yan Ouyang, Harrison Puscher, and Ximing Dou for technical assistance, and Dr. Stefan Höning for advice. This work was supported by National Institutes of Health (NIH) grants DK124431 (J.S.), GM126960 (J.S.), AG061829 (J.S.), an American Diabetes Association Basic Science Award (J.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifeng Wang or Jingshi Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Wan, C., Squiers, G.T., Shen, J. (2022). Endocytosis Assays Using Cleavable Fluorescent Dyes. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics