Skip to main content

Advertisement

Log in

Vimentin is necessary for colony growth of human diploid keratinocytes

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The role of vimentin (Vim) in diploid epithelial cells is not well known. To understand its biological function, we cultured human epidermal keratinocytes under conditions that support migration, proliferation, stratification and terminal differentiation. We identified a keratinocyte subpopulation that shows a p63+/α5β1bright phenotype and displays Vim intermediate filaments (IFs) besides their keratin IF network. These cells were mainly located at the proliferative/migratory rim of the growing colonies; but also, they were scarce and scattered or formed small groups of basal cells in confluent stratified epithelia. Stimulation of cells with EGF and wounding experiments in confluent arrested epithelia increased the number of Vim+ keratinocytes in an extent higher to the expected for a cell population doubling. BrdU labeling demonstrated that most of the proliferative cells located at the migratory border of the colony have Vim, in contrast with proliferative cells located at the basal layer at the center of big colonies which lacked of Vim IFs, suggesting that Vim expression was not solely linked to proliferation. Therefore, we silenced Vim mRNA in the cultured keratinocytes and observed an inhibition of colony growth. Such results, together with long-term cultivation assays which showed that Vim might be associated to pattern formation in cultured epithelia, suggest that Vim expression is essential for a highly motile phenotype, which is necessary for keratinocyte colony growth and possibly for development and wound healing. Vim+/p63+/α5β1bright epithelial cells may play a significant physiological role in embryonic morphogenetic movements; wound healing and other pathologies such as carcinomas and hyperproliferative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackbarow T, Buehler MJ (2007) Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42:8771–8787

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrandon Y, Green H (1987a) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell 50:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Barrandon Y, Green H (1987b) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84:2302–2306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biddle D, Spandau DF (1996) Expression of vimentin in cultured human keratinocytes is associated with cell - extracellular matrix junctions. Arch Dermatol Res 288:621–624

    Article  CAS  PubMed  Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol 91:286–295

    Article  CAS  PubMed  Google Scholar 

  • Bolivar-Flores YJ, Kuri-Harcuch W (1999) Frozen allogeneic human epidermal cultured sheets for the cure of complicated leg ulcers. Dermatol Surg 25:610–617

    Article  CAS  PubMed  Google Scholar 

  • Cavani A, Zambruno G, Marconi A, Manca V, Marchetti M, Giannetti A (1993) Distinctive integrin expression in the newly forming epidermis during wound healing in humans. J Invest Dermatol 101:600–604

    Article  CAS  PubMed  Google Scholar 

  • Cha D, O’Brien P, O’Toole EA, Woodley DT, Hudson LG (1996) Enhanced modulation of keratinocyte motility by transforming growth factor-alpha (TGF-α) relative to epidermal growth factor (EGF). J Invest Dermatol 106:590–597

    Article  CAS  PubMed  Google Scholar 

  • Duprey P, Paulin D (1995) What can be learned from intermediate filament gene regulation in the mouse embryo. Int J Dev Biol 39:443–457

    CAS  PubMed  Google Scholar 

  • Franke WW, Schmid E, Winter S, Osborn M, Weber K (1979a) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 123:25–46

    Article  CAS  PubMed  Google Scholar 

  • Franke WW, Schmid E, Breitkreutz D, Luder M, Boukamp P, Fusenig NE, Osborn M, Weber K (1979b) Simultaneous expression of two different types of intermediate sized filaments in mouse keratinocytes proliferating in vitro. Differentiation 14:35–50

    Article  CAS  PubMed  Google Scholar 

  • Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23:43–59

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Sabanay H, Kravchenko-Balasha N, Geiger B, Levitzki A (2008) Anomalous features of EMT during Keratinocyte transformation. PLoS ONE 3(2):e1574

    Article  PubMed Central  PubMed  Google Scholar 

  • Green H, Thomas J (1978) Pattern formation by cultured human epidermal cells: development of curved ridges resembling dermatoglyphs. Science 200:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fässler R, Brakebusch C, Werner S (2002) A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129:2303–2315

  • Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Quintero M, Kuri-Harcuch W, González-Robles A, Castro-Muñozledo F (2006) Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell Tiss Res 325:77–90

    Article  Google Scholar 

  • Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12:79–90

    Article  CAS  PubMed  Google Scholar 

  • Hirashima T, Hosokawa Y, Iino T, Nagayama M (2013) On fundamental cellular processes for emergence of collective epithelial movement. Biol Open 2:660–666

    Article  PubMed Central  PubMed  Google Scholar 

  • Hotchin NA, Kovach NL, Watt FM (1993) Functional down-regulation of alpha 5 beta 1 integrin in keratinocytes is reversible but commitment to terminal differentiation is not. J Cell Sci 106:1131–1138

    CAS  PubMed  Google Scholar 

  • Jensen UB, Lowell S, Watt FM (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126:2409–2418

    CAS  PubMed  Google Scholar 

  • Jiang C-K, Magnaldo T, Ohtsuki M, Freedberg IM, Bemerd F, Blumenberg M (1993) Epidermal growth factor and transforming growth factor a specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc Natl Acad Sci USA 90:6786–6790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  CAS  PubMed  Google Scholar 

  • Jones PH, Harper S, Watt FM (1995) Stem cell patterning and fate in human epidermis. Cell 80:83–93

    Article  CAS  PubMed  Google Scholar 

  • Kasper M, Karsten U, Stosiek P, Moll R (1989) Distribution of intermediate-filament proteins in the human enamel organ: unusually complex pattern of coexpression of cytokeratin polypeptides and vimentin. Differentiation 40:207–214

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    CAS  PubMed  Google Scholar 

  • Kaur P, Li A (2000) Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J Invest Dermatol 114:413–420

    Article  CAS  PubMed  Google Scholar 

  • Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18:126–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane EB, Hogan BL, Kurkinen M, Garrels JI (1983) Co-expression of vimentin and cytokeratins in parietal endoderm cells of early mouse embryo. Nature 303:701–704

    Article  CAS  PubMed  Google Scholar 

  • Lauweryns B, van den Oord JJ, De Vos R, Missotten L (1993) A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci 34:1983–1990

    CAS  PubMed  Google Scholar 

  • Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 95:3902–3907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Xu J, Coulombe PA, Wirtz D (1999) Keratin filament suspensions show unique micromechanical properties. J Biol Chem 274:19145–19151

    Article  CAS  PubMed  Google Scholar 

  • Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146

    Article  PubMed  Google Scholar 

  • Marchese C, Rubin J, Ron D, Faggioni A, Torrisi MR, Messina A, Frati L, Aaronson SA (1990) Human keratinocyte growth factor activity on proliferation and differentiation of human keratinocytes: differentiation response distinguishes KGF from EGF family. J Cell Physiol 144:326–332

    Article  CAS  PubMed  Google Scholar 

  • McKeon F (2004) p63 and the epithelial stem cell: more than status quo? Genes Dev 18:465–469

    Article  CAS  PubMed  Google Scholar 

  • Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24:1838–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL (2014) A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol Biol Cell 25:776–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miettinen M, Lehto VP, Badley RA, Virtanen I (1982) Expression of intermediate filaments in soft-tissue sarcomas. Int J Cancer 30:541–546

    Article  CAS  PubMed  Google Scholar 

  • Nisticò P, Bissell MJ, Radisky DC (2012) epithelial–mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 4:a011908

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Guin WM, Schermer A, Sun T-T (1985) Immunofluorescence staining of keratin filaments in cultured epithelial cells. Methods Cell Sci 9:123–128

    Google Scholar 

  • Oliver FJ, Menissier-de Murcia J, de Murcia G (1999) Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet 64:1282–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paladini RD, Coulombe PA (1998) Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J Cell Biol 142:1035–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paladini RD, Takahashi K, Bravo NS, Coulombe PA (1996) Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 132:381–397

    Article  CAS  PubMed  Google Scholar 

  • Pawelzyk P, Mücke N, Herrmann H, Willenbacher N (2014) Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS ONE 9(4):e93194

    Article  PubMed Central  PubMed  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poumay Y, Pittelkow MR (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol 104:271–276

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Kreplak L, Buehler MJ (2009a) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10):e7294

    Article  PubMed Central  PubMed  Google Scholar 

  • Qin Z, Kreplak L, Buehler MJ (2009b) Nanomechanical properties of vimentin intermediate filament dimers. Nanotechnology. 20(42):425101

    Article  PubMed  Google Scholar 

  • Ramaekers FC, Haag D, Kant A, Moesker O, Jap PH, Vooijs GP (1983) Coexpression of keratin- and vimentin-type intermediate filaments in human metastatic carcinoma cells. Proc Natl Acad Sci USA 80:2618–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond WA, Leong AS (1989) Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J Pathol 157:299–306

    Article  CAS  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  CAS  PubMed  Google Scholar 

  • Rice RH, Green H (1977) The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell 11:417–422

    Article  CAS  PubMed  Google Scholar 

  • Russell AJ, Fincher EF, Millman L, Smith R, Vela V, Waterman EA, Dey CN, Guide S, Weaver VM, Marinkovich MP (2003) Alpha 6 beta 4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of alpha 3 beta 1 integrin. J Cell Sci 116:3343–3356

    Article  Google Scholar 

  • Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB, Russell A, Marinkovich MP, Jones JC (2006) Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem 281:35487–35498

  • Summerhayes IC, Cheng YS, Sun TT, Chen LB (1981) Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo[a]pyrene-induced neoplastic progression. J Cell Biol 90:63–69

    Article  CAS  PubMed  Google Scholar 

  • Sun TT, Green H (1977) Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature 269:489–493

    Article  CAS  PubMed  Google Scholar 

  • SundarRaj N, Rizzo JD, Anderson SC, Gesiotto JP (1992) Expression of vimentin by rabbit corneal epithelial cells during wound repair. Cell Tissue Res 267:347–356

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  • Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA 96:8449–8454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watt FM (1983) Involucrin and other markers of keratinocyte terminal differentiation. J Invest Dermatol 81:100s–103s

    Article  CAS  PubMed  Google Scholar 

  • Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353:831–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watt FM, Green H (1982) Stratification and terminal differentiation of cultured epidermal cells. Nature 295:434–436

    Article  CAS  PubMed  Google Scholar 

  • Wawersik M, Coulombe PA (2000) Forced expression of keratin 16 alters the adhesion, differentiation, and migration of mouse skin keratinocytes. Mol Biol Cell 11:3315–3327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wawersik MJ, Mazzalupo S, Nguyen D, Coulombe PA (2001) Increased levels of keratin 16 alter epithelialization potential of mouse skin keratinocytes in vivo and ex vivo. Mol Biol Cell 12:3439–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163:327–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu N, Rollin J, Masse I, Lamartine J, Gidrol X (2012) p63 regulates human keratinocyte proliferation via MYC-regulated gene network and differentiation commitment through cell adhesion-related gene network. J Biol Chem 287:5627–5638

  • Yamada S, Wirtz D, Coulombe PA (2002) Pairwise assembly determines the intrinsic potential for self-organization and mechanical properties of keratin filaments. Mol Biol Cell 13:382–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu AJ, Watt FM (1999) beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126:2285–2298

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part through grant PICDS08-8 from Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF) and Consejo Nacional de Ciencia y Tecnología (CONACyT) grants 1314P-N9507 and G28272-N. The authors would like to thank Mrs. Erika Sánchez Guzmán for technical assistance. The authors would also like to thank Ms. Maria Elena Rojano for her administrative assistance and Mr. Alberto Rodriguez, Mr. Crescencio Flores, and Mrs. Columba Guadarrama for technical assistance in preparing all of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Castro-Muñozledo.

Additional information

Federico Castro-Muñozledo and Cristina Velez-DelValle have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Muñozledo, F., Velez-DelValle, C., Marsch-Moreno, M. et al. Vimentin is necessary for colony growth of human diploid keratinocytes. Histochem Cell Biol 143, 45–57 (2015). https://doi.org/10.1007/s00418-014-1262-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1262-6

Keywords

Navigation