Skip to main content
Log in

Brain injury induces cholesterol 24-hydroxylase (Cyp46) expression in glial cells in a time-dependent manner

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansell BJ, Fonarow GC, Navab M, Fogelman AM (2007) Modifying the anti-inflammatory effects of high-density lipoprotein. Curr Atheroscler Rep 9:57–63

    Article  CAS  PubMed  Google Scholar 

  • Björkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260:493–508

    Article  PubMed  Google Scholar 

  • Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    PubMed  Google Scholar 

  • Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Aspects Med 30:171–179

    Article  PubMed  Google Scholar 

  • Bogdanovic N, Bretillon L, Lund EG, Diczfalusy U, Lannfelt L, Winblad B, Russell DW, Björkhem I (2001) On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci Lett 314:45–48

    Article  CAS  PubMed  Google Scholar 

  • Bretillon L, Diczfalusy U, Bjorkhem I, Maire MA, Martine L, Joffre C, Acar N, Bron A, Creuzot-Garcher C (2007) Cholesterol-24S-hydroxylase (CYP46A1) is specifically expressed in neurons of the neural retina. Curr Eye Res 32:361–366

    Article  CAS  PubMed  Google Scholar 

  • Brown J III, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B (2004) Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 279:34674–34681

    Article  CAS  PubMed  Google Scholar 

  • Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    Article  CAS  PubMed  Google Scholar 

  • Cartagena CM, Ahmed F, Burns MP, Pajoohesh-Ganji A, Pak DT, Faden AI, Rebeck GW (2008) Cortical injury increases cholesterol 24S- hydroxylase (Cyp46) levels in the rat brain. J Neurotrauma 25:1087–1098

    Article  PubMed  Google Scholar 

  • Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17:29–43

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 102:8333–8338

    Article  CAS  PubMed  Google Scholar 

  • Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397

    Article  CAS  PubMed  Google Scholar 

  • Faden AI (1996) Pharmacologic treatment of acute traumatic brain injury. JAMA 276:569–570

    Article  CAS  PubMed  Google Scholar 

  • Gasparovic C, Rosenberg GA, Wallace JA, Estrada EY, Roberts K, Pastuszyn A, Ahmed W, Graham GD (2001) Magnetic resonance lipid signals in rat brain after experimental stroke correlate with neutral lipid accumulation. Neurosci Lett 301:87–90

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 9:4416–4429

    CAS  PubMed  Google Scholar 

  • Goldstein LB (2003) Model of recovery of locomotor ability after sensorimotor cortex injury in rats. ILAR J 44:125–129

    CAS  PubMed  Google Scholar 

  • Hansson GK, Robertson AK, Soderberg-Naucler C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297–329

    Article  CAS  PubMed  Google Scholar 

  • He X, Jenner AM, Ong WY, Farooqui AA, Patel SC (2006) Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J Neuropathol Exp Neurol 65:652–663

    Article  CAS  PubMed  Google Scholar 

  • Janeczko K (1993) Co-expression of GFAP and vimentin in astrocytes proliferating in response to injury in the mouse cerebral hemisphere. A combined autoradiographic and double immunocytochemical study. Int J Dev Neurosci 11:139–147

    Article  CAS  PubMed  Google Scholar 

  • Kamada H, Sato K, Iwai M, Zhang WR, Nagano I, Manabe Y, Shoji M, Abe K (2003) Temporal and spatial changes of free cholesterol and neutral lipids in rat brain after transient middle cerebral artery occlusion. Neurosci Res 45:91–100

    Article  CAS  PubMed  Google Scholar 

  • Kay AD, Day SP, Kerr M, Nicoll JA, Packard CJ, Caslake MJ (2003) Remodeling of cerebrospinal fluid lipoprotein particles after human traumatic brain injury. J Neurotrauma 20:717–723

    Article  PubMed  Google Scholar 

  • Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96:7238–7243

    Article  CAS  PubMed  Google Scholar 

  • Lütjohann D (2006) Cholesterol metabolism in the brain: importance of 24S-hydroxylation. Acta Neurol Scand Suppl 185:33–42

    Article  PubMed  Google Scholar 

  • Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 66:343–358

    Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  CAS  PubMed  Google Scholar 

  • Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Yu R, Gharavi N, Huang W, Ezra N, Lotfizadeh A, Anantharamaiah GM, Alipour N, Van Lenten BJ, Reddy ST, Marelli D (2007) High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr Atheroscler Rep 9:244–248

    Article  CAS  PubMed  Google Scholar 

  • Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125–134

    Article  CAS  PubMed  Google Scholar 

  • Ohyama Y, Meaney S, Heverin M, Ekström L, Brafman A, Shafir M, Andersson U, Olin M, Eggertsen G, Diczfalusy U, Feinstein E, Bjorkhem I (2006) Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): marked insensitivity toward different regulatory axes. J Biol Chem 281:3810–3820

    Article  CAS  PubMed  Google Scholar 

  • Papassotiropoulos A, Lütjohann D, Bagli M, Locatelli S, Jessen F, Rao ML, Maier W, Bjorkhem I, von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer’s disease. Neuroreport 11:1959–1962

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pearlson GD, Robinson RG (1981) Suction lesions of the frontal cerebral cortex in the rat induce asymmetrical behavioral and catecholaminergic responses. Brain Res 218:233–242

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Pekny M, Wilhelmsson U, Bogestål YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111

    Article  CAS  PubMed  Google Scholar 

  • Pekovic S, Filipovic R, Subasic S, Lavrnja I, Stojkov D, Nedeljkovic N, Rakic L, Stojiljkovic M (2005) Downregulation of glial scarring after brain injury: the effect of purine nucleoside analogue ribavirin. Ann NY Acad Sci 1048:296–310

    Article  CAS  PubMed  Google Scholar 

  • Pekovic S, Subasic S, Nedeljkovic N, Bjelobaba I, Filipovic R, Milenkovic I, Lavrnja I, Stojkov D, Jovanovic S, Rakic L, Stojiljkovic M (2006) Molecular basis of brain injury and repair. In: Ruždijić S, Rakić L (eds) Neurobiological studies—from genes to behaviour. Research Signpost, Kerala, India, pp 143–165

    Google Scholar 

  • Perovic M, Mladenovic Djordjevic A, Smiljanic K, Tanic N, Rakic L, Ruzdijic S, Kanazir S (2009) Expression of cholesterol homeostasis genes in the brain of the male rat is affected by age and dietary restriction. Biogerontology 10:735–745

    Article  CAS  Google Scholar 

  • Povlishock JT (1993) Traumatic brain injury: the pathobiology of injury and repair. In: Gorio A (ed) Neuroregeneration. Raven Press Ltd, New York, pp 185–216

    Google Scholar 

  • Povlishock JT, Erb DE, Arstruc J (1992) Axonal response to traumatic brain injury: reactive axonal change, deafferentation, and neuroplasticity. J Neurotrauma 9:S189–S200

    Article  PubMed  Google Scholar 

  • Pulsinelli WA, Brierly JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  CAS  PubMed  Google Scholar 

  • Ramirez DM, Andersson S, Russell DW (2008) Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol 507:1676–1693

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Corral SA, Reiter RJ, Dun-Xian T, Ortiz GG, Lopez-Armas G (2009) Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal. doi:10.1089/ars.2009.2629

  • Saito M, Benson EP, Saito M, Rosenberg A (1987) Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J Neurosci Res 18:319–325

    Article  CAS  PubMed  Google Scholar 

  • Sanossian N, Saver JL, Navab M, Ovbiagele B (2007) High-density lipoprotein cholesterol: an emerging target for stroke treatment. Stroke 38:1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Saunders DE, Howe FA, Van den Boogaart A, McLean MA, Griffiths JR, Brown MM (1995) Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy. Stroke 26:1007–1013

    CAS  PubMed  Google Scholar 

  • Schiffer D, Giordana MT, Cavalla P, Vigliani MC, Attanasio A (1993) Immunohistochemistry of glial reaction after injury in the rat: double stainings and markers of cell proliferation. Int J Dev Neurosci 11:269–280

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (2010) “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun. doi:10.1016/j.bbi.2010.01.010

  • Schwartz M, Moalem G (2001) Beneficial immune activity after CNS injury: prospects for vaccination. J Neuroimmunol 113:185–192

    Article  CAS  PubMed  Google Scholar 

  • Seth P, Koul N (2008) Astrocyte, the star avatar: redefined. J Biosci 33:405–421

    Article  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  Google Scholar 

  • Szele FG, Alexander C, Chesselet MF (1995) Expression of molecules associated with neuronal plasticity in the striatum after aspiration and thermocoagulatory lesions of the cerebral cortex in adult rats. J Neurosci 15:4429–4448

    CAS  PubMed  Google Scholar 

  • Takamiya Y, Kohsaka S, Toya S, Otani M, Tsukada Y (1988) Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Brain Res 466:201–210

    CAS  PubMed  Google Scholar 

  • Teunissen CE, Floris S, Sonke M, Dijkstra CD, De Vries HE, Lutjohann D (2007) 24S-Hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis. J Neurosci Res 85:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Vasic R, Stojiljkovic M, Milenkovic I, Pekovic S, Rakic L (1998) Immunoreactivity of glial fibrillary acidic protein (GFAP) in cortex and hippocampus after neonatal sensorimotor cortex lesion. Iugosl Physiol Pharmacol Acta 34:237–245

    CAS  Google Scholar 

  • Vela JM, Yáñez A, González B, Castellano B (2002) Time course of proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. J Neurotrauma 19:1503–1520

    Article  PubMed  Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor D. W. Russell for generous gift of cholesterol 24-hydroxylase antibody. This work was supported by the Ministry of Science and Technological Development, Republic of Serbia, grants 143004 (SK) and 143005 (MS).

Conflict of interest statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Kanazir.

Additional information

The authors K. Smiljanic and I. Lavrnja equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smiljanic, K., Lavrnja, I., Mladenovic Djordjevic, A. et al. Brain injury induces cholesterol 24-hydroxylase (Cyp46) expression in glial cells in a time-dependent manner. Histochem Cell Biol 134, 159–169 (2010). https://doi.org/10.1007/s00418-010-0718-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0718-6

Keywords

Navigation