Skip to main content
Log in

Essential role of obscurin in cardiac myofibrillogenesis and hypertrophic response: evidence from small interfering RNA-mediated gene silencing

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Obscurin is a recently identified giant multidomain muscle protein (∼800 kDa) whose structural and regulatory functions remain to be defined. The goal of this study was to examine the effect of obscurin gene silencing induced by RNA interference on the dynamics of myofibrillogenesis and hypertrophic response to phenylephrine in cultured rat cardiomyocytes. We found that that the adenoviral transfection of short interfering RNA (siRNA) constructs targeting the first coding exon of obscurin sequence resulted in progressive depletion of cellular obscurin. Confocal microscopy demonstrated that downregulation of obscurin expression led to the impaired assembly of new myofibrillar clusters and considerable aberrations of the normal structure of the contractile apparatus. While the establishment of the initial periodic pattern of α-actinin localization remained mainly unaffected in siRNA-transfected cells, obscurin depletion did cause the defective lateral alignment of myofibrillar bundles, leading to their abnormal bifurcation, dispersal and multiple branching. Bending of immature myofibrils, apparently associated with the loss of their rigidity, a modified titin pattern, the absence of well-formed A-bands in newly formed contractile structures as documented by a diffuse localization of sarcomeric myosin labeling, and an occasional irregular periodicity of sarcomere spacing were typical of obscurin siRNA-treated cells. These results suggest that obscurin is indispensable for spatial positioning of contractile proteins and for the structural integration and stabilization of myofibrils, especially at the stage of myosin filament incorporation and A-band assembly. This demonstrates a vital role for obscurin in myofibrillogenesis and hypertrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarkova I, Ehler E, Lange S, Schoenauer R, Perriard J-C (2003) M-band: a safeguard for sarcomere stability? J Muscle Res Cell Motil 24:191–203

    Article  PubMed  CAS  Google Scholar 

  • Anderson SL, Ekstein J, Donnelly MC, Keefe EM, Toto NR, LeVoci LA, Rubin BY (2004) Nemaline myopathy in the Ashkenazi Jewish population is caused by deletion in the nebulin gene. Human Genet 115:185–190

    Article  CAS  Google Scholar 

  • Aoki K, Barker C, Danthinne X, Imperiale MJ, Nabel GJ (1999) Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol Med 5:224–231

    PubMed  CAS  Google Scholar 

  • Aoki H, Sadoshima J, Izumo S (2000) Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 6:183–188

    Article  PubMed  CAS  Google Scholar 

  • Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C (2004) Muscle ring finger protein-1 inhibits PKCε activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V (2003) Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 160:245–253

    Article  PubMed  CAS  Google Scholar 

  • Bang M-L, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier RH, Labeit S (2001) The complete gene sequence of titin, expression of an unusual ∼700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33:545–557

    Article  PubMed  CAS  Google Scholar 

  • Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H (2004) The biology of desmin filaments: how do mutations affect their structure, assembly, and organization? J Struct Biol 148:137–152

    Article  PubMed  CAS  Google Scholar 

  • Benian GM, Tinley TL, Tang X, Borodovsky M (1996) The Caenorhabditis elegans gene unc-89, required for muscle assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Cell Biol 132:835–848

    Article  PubMed  CAS  Google Scholar 

  • Bennett PM, Gautel M (1996) Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 259:896–903

    Article  PubMed  CAS  Google Scholar 

  • Borisov AB (1991) Myofibrillogenesis and reversible disassembly of myofibrils as adaptive reactions of cardiac muscle cells. Acta Physiol Scand 142(Suppl 599):71–80

    Google Scholar 

  • Borisov AB, Goncharova EI, Pinaev GP, Rumyantsev PP (1989) Changes in alpha-actinin localization and myofibrillogenesis in rat cardiomyocytes in culture. Tsitologiia 31:642–646

    PubMed  CAS  Google Scholar 

  • Borisov AB, Raeker MO, Kontrogianni-Konstantopoulos A, Yang K, Kurnit DM, Bloch RJ, Russell MW (2003) Rapid response of cardiac obscurin gene cluster to aortic stenosis: differential activation of Rho-GEF and MLCK and involvement in hypertrophic growth. Biochem Biophys Res Commun 310:910–918

    Article  PubMed  CAS  Google Scholar 

  • Borisov AB, Kontrogianni-Konstantopoulos A, Bloch RJ, Westfall MV, Russell MW (2004) Dynamics of obscurin localization during differentiation and remodeling of cardiac myocytes: obscurin as an integrator of myofibrillar structure. J Histochem Cytochem 52:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Campbell TN, Choy FY (2005) RNA interference: past, present and future. Curr Issues Mol Biol 7:1–6

    PubMed  CAS  Google Scholar 

  • Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22:103–116

    PubMed  CAS  Google Scholar 

  • Carlsson L, Thornell LE (2001) Desmin-related myopathies in mice and man. Acta Physiol Scand 171:341–348

    Article  PubMed  CAS  Google Scholar 

  • Chi JT, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO (2003) Genomewide view of gene silencing by small interfering RNAs. Proc Nat Acad Sci USA 100:6289–6291

    Article  PubMed  CAS  Google Scholar 

  • Clerk A, Sugden PH (2000) Small guanine nucleotide binding proteins and myocardial hypertrophy. Circ Res 86:1019–1023

    PubMed  CAS  Google Scholar 

  • Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  PubMed  CAS  Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger HM, Hertig C, Eppenberger-Eberhardt M (1994) Adult rat cardiomyocytes in culture: a model system to study the plasticity of the differentiated cardiac phenotype at the molecular and cellular levels. Trends Cardiovasc Med 4:187–192

    Article  Google Scholar 

  • Finkel T (1999) Myocyte hypertrophy: the long and winding RhoA’s. J Clin Invest 103:1619–1620

    Article  PubMed  CAS  Google Scholar 

  • Fridlyanskaya II, Goncharova EI, Krylova T, Borisov AB, Pinaev GP (1989) Monoclonal antibodies to the muscle isoform of α-actinin: a marker for studies of differentiation of skeletal and cardiac muscle. Tsitologiia 31:1234–1237

    PubMed  CAS  Google Scholar 

  • Gan XT, Rajapurohitam V, Haist JW, Chidiac P, Cook MA, Karmazyn M (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312:27–34

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimach H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11:18–25

    Article  PubMed  CAS  Google Scholar 

  • Hefti MA, Harder BA, Eppenberger HM, Schaub MC (1997) Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol 29:2873–2892

    Article  PubMed  CAS  Google Scholar 

  • Hein S, Schaper J (2002) Weakness of a giant: mutations of the sarcomeric protein titin. Trends Mol Med 8:311–313

    Article  PubMed  CAS  Google Scholar 

  • Hoit BD (2001) New approaches to phenotypic analysis in adult mice. J Mol Cell Cardiol 33:27–35

    Article  PubMed  CAS  Google Scholar 

  • Holtzer H, Hijikata T, Lin ZX, Zhang ZQ, Holtzer S (1997) Independent assembly of 1.6 μm long bipolar MHC filaments and I-Z-I bodies. Cell Struct Funct 22:83–93

    Article  PubMed  CAS  Google Scholar 

  • Houmeida A, Holt J, Tskhovrebova L, Trinick J (1995) Studies of the interaction between titin and myosin. J Cell Biol 131:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Huppi K, Martin SE, Caplen NJ (2005) Defining and assaying RNAi in mammalian cells. Mol Cell 17:1–10

    Article  PubMed  CAS  Google Scholar 

  • Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Noushi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291:385–393

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H (2005) Monogenic causes of heart failure. Familial dilated cardiomyopathy. In: Raizada MK, Paton JFR, Kasparov S, Katovich MJ (eds) Cardiovascular genomics. Humana Press, Totowa, pp 115–134

    Google Scholar 

  • Kasahara H, Aoki H (2005) Gene silencing using adenoviral RNAi vector in vascular smooth muscle cells and cardiomyocytes. Methods Mol Med 112:155–172

    Article  PubMed  CAS  Google Scholar 

  • Komuro I, Yazaki A (2002) Molecular basis of cardiac hypertrophy. In: Narula J, Virmani R, Ballester M, Carrio I, Westaby S, Frazier OH, Willerson JT (eds) Heart failure: pathogenesis and treatment. Martin Dunitz, London, pp 173–184

    Google Scholar 

  • Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol Biol Cell 14:1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Randall WR, Bloch RJ (2004) Obscurin regulates the organization of myosin into A-bands. Am J Physiol 287:C209–C217

    Article  CAS  Google Scholar 

  • Lange S, Himmel M, Auerbach D, Agarkova I, Hayess K, Fürst DO, Perriard J-C, Ehler E (2005) Dimerisation of myomesin: implications for the structure of the sarcomeric M-band. J Mol Biol 345:289–298

    Article  PubMed  CAS  Google Scholar 

  • Lesniak W, Schaefer C, Grueninger S, Chiesi M (1995) Effect of alpha adrenergic stimulation and carnitine palmitoyl transferase I inhibition on hypertrophying adult rat cardiomyocytes in culture. Mol Cell Biochem 142:25–34

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Kazmierski ST, Labeit S, Gregorio CC (2003) Nebulin: the nebulous multifunctional giant of striated muscle. Trends Cardiovasc Med 13:195–201

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Musa H, Gautel M, Peckham M (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. J Cell Sci 116:4811–4819

    Article  PubMed  CAS  Google Scholar 

  • Miller MK, Granzier H, Ehler E, Gregorio CC (2004) The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol 14:119–126

    Article  PubMed  CAS  Google Scholar 

  • Mitcheson JS, Hancox JC, Levi AJ (1998) Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res 39:280–300

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, Murphy RT, Lurie PR, Schwartz RJ, Elliott PM, Vatta M, McKenna W, Towbin JA, Bowles NE (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in diated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215

    Article  PubMed  CAS  Google Scholar 

  • Montgomery MK (2004) RNA interference: historical overview and significance. Meth Mol Biol 265:3–21

    CAS  Google Scholar 

  • O’Brien KP, Westerlund I, Sonnhammer EL (2004) OrthoDisease: a database of human disease orthologs. Hum Mutat 24:112–119

    Article  PubMed  CAS  Google Scholar 

  • Opie LH (2004) Overload hypertrophy and its molecular biology. In: Opie LH (ed) Heart physiology: from cell to circulation. Lippincott William & Wilkins, Philadelphia, pp 402–427

    Google Scholar 

  • Paulin D, Li Z (2004) Desmin: a major intermediate filament protein essential for the structural integrity and functions of muscle. Exp Cell Res 301:1–7

    Article  PubMed  CAS  Google Scholar 

  • Perrella M, Mäki T, Prasad S, Pimental D, Singh K, Takahashi N, Yoshizumi M, Alali A, Higashiyama S, Kelly RA, Lee M-E, Smith TW (1994) Regulation of heparin-binding epidermal growth factor-loke growth factor mRNA levels ny hypertrophic stimuli in neonatal and adult rat cardiac myocytes. J Biol Chem 269:27045–27050

    PubMed  CAS  Google Scholar 

  • Person V, Kostin S, Suzuki K, Labeit S, Schaper J (2000) Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci 113:3851–3859

    PubMed  CAS  Google Scholar 

  • Roberts R, Sigwart U (2001) New concepts in hypertrophic cardiomyopathy, part I. Circulation 104:2113–2116

    Article  PubMed  CAS  Google Scholar 

  • Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ (2002) Identification, tissue expression and chromosomal localization of human obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 282:237–246

    Article  PubMed  CAS  Google Scholar 

  • Sanger JW, Sanger JM (2001) Fishing out proteins that bind titin. J Cell Biol 154:21–24

    Article  PubMed  CAS  Google Scholar 

  • Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1997) Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920

    Article  PubMed  CAS  Google Scholar 

  • Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1998) Triiodothyronine restricts myofibrillar growth and enhances beating frequency in cultured adult rat cardiomyocytes. Basic Res Cardiol 93:391–395

    Article  PubMed  CAS  Google Scholar 

  • Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard J-C, Hegner M, Agarkova I (2005) Myomesin is a molecular spring with adaptable elasticity. J Mol Biol 349:367–379

    Article  PubMed  CAS  Google Scholar 

  • Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomeric assembly and cardiac contractility. Nat Genet 31:106–110

    Article  PubMed  CAS  Google Scholar 

  • Shah SB, Peters D, Jordan KA, Milner DJ, Fridén J, Capetanaki Y, Lieber RL (2001) Sarcomere number regulation maintained after immobilization in desmin-null mouse skeletal muscle. J Exp Biol 204:1703–1710

    PubMed  CAS  Google Scholar 

  • Shen C, Buck AK, Liu X, Winkler M, Reske SN (2003) Gene silencing by adenovirus-delivered siRNA. FEBS Lett 539:111–114

    Article  PubMed  CAS  Google Scholar 

  • Small TM, Gernert KM, Flaherty DB, Mercer KB, Borodovsky M, Benian GM (2004) Three new isoforms of Caenorhabditis elegans UNC-89 containing MLCK-like protein kinase domains. J Mol Biol 342:91–108

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli CB, Rosenthal A, Borisov AB, Ensing GJ, Russell MW (2004) Novel troponin T mutation in familial dilated cardiomyopathy with gender-dependent severity. Mol Genet Metab 83:188–196

    Article  PubMed  CAS  Google Scholar 

  • Sutter SB, Raeker MO, Borisov AB, Russell MW (2004) Orthologous relationship of obscurin and Unc-89: phylogeny of a novel family of tandem myosin light chain kinases. Dev Genes Evol 214:352–359

    Article  PubMed  CAS  Google Scholar 

  • Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107–2124

    Article  PubMed  CAS  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    Article  PubMed  CAS  Google Scholar 

  • Trombitás K, Greaser M, French G, Granzier H (1998) PEVK extension of human soleus muscle titin revealed by immunolabeling with anti-titin antibody 9D10. J Struct Biol 122:188–196

    Article  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J (2003) Titin: properties and family relationships. Nat Rev Mol Cell Biol 4:679–689

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J (2004) Properties of titin immunoglobulin and fibronectin-3 domains. J Biol Chem 279:46351–46354

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J (2005) Muscle disease: a giant feels the strain. Nat Med 11:478–479

    Article  PubMed  CAS  Google Scholar 

  • Van Driest SI, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2005) Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clin Proc 80:463–469

    PubMed  CAS  Google Scholar 

  • van der Ven PFM, Ehler E, Perriard JC, Fusrt DO (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J Muscle Res Cell Motil 20:569–579

    Article  PubMed  Google Scholar 

  • van der Ven PFM, Bartsch JW, Gautel M, Jockusch H, Fürst DO (2000) A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 113:1405–1414

    PubMed  Google Scholar 

  • Wang J, Shaner N, Bittal B, Zhou Q, Chen J, Sanger JM, Sanger JW (2005) Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskel 61:34–48

    Article  CAS  Google Scholar 

  • Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, Schwartz RJ (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129:1705–1714

    PubMed  CAS  Google Scholar 

  • Weikert C, Eppenberger-Eberhardt M, Eppenberger HM (2003) Cellular engineering of ventricular adult cardiac myocytes. Cardiovasc Res 59: 874–882

    Article  PubMed  CAS  Google Scholar 

  • Weiner A (2003) Soaking up RNAi. Mol Cell 12:535–536

    Article  PubMed  CAS  Google Scholar 

  • Westfall MV (2003) Myofilament protein phosphorylation by PKC in genetically engineered adult cardiac myocytes. Meth Mol Biol 219: 159–166

    CAS  Google Scholar 

  • Young GP, Ehler E, Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154:123–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from grants through the Muscle Dystrophy Association (MDA3803) to M.W.R. and A.B.B., the NIH (R01 HL 075093-01) to M.W.R. and A.B.B., and R.J.B. (R01 HL 64304). We are grateful to Chris Edwards and Bruce Donohoe, the members of the Microscopy and Image Analysis Laboratory, for support of this work. We also thank Pavel Borisov for assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei B. Borisov or Mark W. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.B., Sutter, S.B., Kontrogianni-Konstantopoulos, A. et al. Essential role of obscurin in cardiac myofibrillogenesis and hypertrophic response: evidence from small interfering RNA-mediated gene silencing. Histochem Cell Biol 125, 227–238 (2006). https://doi.org/10.1007/s00418-005-0069-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0069-x

Keywords

Navigation