Skip to main content
Log in

Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This study aimed to reveal if NeuN, a neuronal nuclei (NeuN) antibody, is a selective marker of intrinsic primary afferent neurons (IPANs) in the guinea-pig gastrointestinal tract as previously hypothesised. The NeuN immunoreactivity was found in the enteric nervous system with exception of the esophagus. Two groups of NeuN-expressing neurons were observed: neurons with immunostained nuclei and cytoplasm (NeuNNC) and neurons only expressing immunoreactivity in their nuclei (NeuNN). The NeuNN-immunoreactive neurons were found in the myenteric plexus of the stomach and the colon. In the stomach, none of the NeuNN-expressing neurons, of which 55±3% co-expressed calbindin, had a Dogiel type I or II morphology. The NeuNN-positive neurons of the colon, which did not express calbindin, did not resemble a Dogiel type II morphology either, but were small-sized neurons. The NeuNNC-immunoreactive neurons were observed in both the small and large intestine. These neurons were smooth-contoured and bigger-sized, resembling a Dogiel type II morphology. Some of these neurons co-expressed calbindin. The present data reveal the existence of two populations of Dogiel type II neurons, exhibiting NeuN +NC /calbindin+ or NeuN +NC /calbindin immunoreactivity, in the intestine. Assuming that all IPANs exhibit a Dogiel type II morphology, we conclude that the cytoplasmic expression of NeuN is an exclusive feature of IPANs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–4
Fig. 5–10

Similar content being viewed by others

References

  • Bornstein JC, Costa M, Furness JB, Lees GM (1984) Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine. J Physiol 351:313–325

    PubMed  CAS  Google Scholar 

  • Brody KM, Costa M, Brookes SJH (2002) Neu-N immunoreactivity marks primary afferent neurons in the guinea-pig submucous plexus. Proc Aust Neurosci Soc 13:105

    Google Scholar 

  • Brookes SJH, Costa M (2002) Cellular organisation of the mammalian enteric nervous system. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor& Francis, London, pp 393–467

    Google Scholar 

  • Brookes SJH, Ewart WR, Wingate DL (1987) Intracellular recordings from myenteric neurones in the human colon. J Physiol 390:305–318

    PubMed  CAS  Google Scholar 

  • Brookes SJH, Song ZM, Ramsay GA, Costa M (1995) Long aboral projections of Dogiel type II, AH neurons within the myenteric plexus of the guinea pig small intestine. J Neurosci 15:4013–4022

    PubMed  CAS  Google Scholar 

  • Brookes SJH, Chen BN, Hodgson WM, Costa M (1996) Characterization of excitatory and inhibitory motor neurons to the guinea-pig lower esophageal sphincter. Gastroenterology 111:108–117

    Article  PubMed  CAS  Google Scholar 

  • Brookes SJH, Hennig G, Schemann M (1998) Identification of motor neurons to the circular muscle of the guinea-pig gastric corpus. J Comp Neurol 397:268–280

    Article  PubMed  CAS  Google Scholar 

  • Castelucci P, Robbins HL, Poole DP, Furness JB (2002) The distribution of purine P2X2 receptors in the guinea pig enteric nervous system. Histochem Cell Biol 117:415–422

    Article  PubMed  CAS  Google Scholar 

  • Chiocchetti R, Poole DP, Kimura H, Aimi Y, Robbins HL, Castelucci P, Furness JB (2003) Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell Tissue Res 311:11–22

    Article  PubMed  CAS  Google Scholar 

  • Chiocchetti R, Grandis A, Bombardi C, Clavenzani P, Costerbosa GL, Lucchi ML, Furness JB (2004) Characterisation of neurons expressing calbindin immunoreactivity in the ileum of the unweaned and mature sheep. Cell Tissue Res 318:289–303

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Furness JB, Bornstein JC, Kunze WAA (1998a) Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience 82:899–914

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Furness JB, Li ZS, Bornstein JC, Kunze WA (1998b) Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience 86:679–694

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen W, De Laet A, Kroese ABA, van Bogaert P-P, Scheuermann DW, Timmermans J-P (2000) Electrophysiological features of morphological Dogiel type II neurons in the myenteric plexus of pig small intestine. J Neurophysiol 84:102–111

    PubMed  CAS  Google Scholar 

  • Cornelissen W, De Laet A, Kroese ABA, van Bogaert P-P, Scheuermann DW, Timmermans J-P (2001) Excitatory synaptic inputs on myenteric Dogiel type II neurones in the pig ileum. J Comp Neurol 432:137–154

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Brody K, Brookes SJH (2001) A new marker for enteric primary afferent neurones. Neurogastroenterol Mot 13:383

    Google Scholar 

  • Costa M, Davies P, Brody KM, Brookes SJH, Bornstein J (2002) Histochemical identification of enteric primary afferent neurons. Proc Aust Neurosci Soc 13:53

    Google Scholar 

  • De Laet A, Schrödl F, Cornelissen W, van Bogaert P-P, Scheuermann DW, Timmermans J-P (2000) Electrophysiological and morphological characterization of myenteric neurones in the rat esophagus. In: Singer MV, Krammer H-J (eds) Neurogastroenterology—from basics to the clinics. Kluwer Academic Publishers, Dordrecht, pp 49–59

    Google Scholar 

  • De Laet A, Cornelissen W, Adriaensen D, van Bogaert P-P, Scheuermann DW, Timmermans J-P (2002) Ca2+ -involvement in the action potential generation of myenteric neurones in the rat oesophagus. Neurogastroenterol Mot 14:161–172

    Article  CAS  Google Scholar 

  • Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358

    PubMed  CAS  Google Scholar 

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud H-R, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307

    Article  PubMed  Google Scholar 

  • Erde SM, Sherman D, Gershon MD (1985) Morphology and serotonergic innervation of physiologically identified cells of the guinea pig’s myenteric plexus. J Neurosci 5:617–633

    PubMed  CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Keast JR (1984) Choline acetyltransferase- and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell Tissue Res 237:329–336

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Keast JR, Pompolo S, Bornstein JC, Costa M, Emson PC, Lawson DEM (1988) Immunohistochemical evidence for the presence of calcium-binding proteins in enteric neurons. Cell Tissue Res 252:79–87

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Pompolo S, Murphy R, Giraud A (1989) Projections of neurons with neuromedin U-like immunoreactivity in the small intestine of the guinea-pig. Cell Tissue Res 257:415–422

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Bornstein JC, Kunze WA, Clerc N (1999) The enteric nervous system and its extrinsic connections. In: Yamada T (ed) Textbook of Gastroenterology. Lippincott Williams& Wilkins Publishers, Philadelphia, pp 11–35

    Google Scholar 

  • Furness JB, Alex G, Clark MJ, Lal VV (2003) Morphologies and projections of defined classes of neurons in the submucosa of the guinea-pig small intestine. Anat Rec 272A:475–483

    Article  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  PubMed  CAS  Google Scholar 

  • German DC, Ng MC, Liang C-L, McMahon A, Iacopino AM (1997) Calbindin-D28K in nerve cell nuclei. Neuroscience 81:735–743

    Article  PubMed  CAS  Google Scholar 

  • Gershon MD (2002) Development of the enteric nervous system. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor& Francis, London, pp 469–525

    Google Scholar 

  • Hendriks R, Bornstein JC, Furness JB (1990) An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea pig ileum. Neurosci Lett 110:286–290

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Bornstein JC, Costa M, Furness JB, Takahashi Y, Iwanaga T (1988) Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. J Auton Nerv Syst 22:141–150

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson KM, Morgan JM, Furness JB, Southwell BR (1999) Neurons bearing NK3 tachykinin receptors in the guinea-pig ileum revealed by specific binding of fluorescently labelled agonists. Histochem Cell Biol 112:233–246

    Article  PubMed  CAS  Google Scholar 

  • Johnson PJ, Bornstein JC, Burcher E (1998) Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 124:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Lees GM, Pearson GT (1986) Electrophysiology and morphology of vasoactive-intestinal-peptide-immunoreactive neurones of the guinea-pig ileum. J Physiol 378:1–11

    PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Tamir H, Gershon MD (1992) Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 12:235–248

    PubMed  CAS  Google Scholar 

  • Kuramoto H, Kuwano R (1994) Immunohistochemical demonstration of calbindin-containing nerve endings in the rat oesophagus. Cell Tissue Res 278:57–64

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP (1993) Immunohistochemical analysis of neurons and their projections in the proximal colon of the guinea-pig. Arch Histol Cytol 56:459–473

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP, Furness JB (1992) Distribution of enteric nerve cells that project to the coeliac ganglion of the guinea-pig. Cell Tissue Res 269:119–132

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP, Furness JB (1993) Distribution of enteric nerve cells projecting to the superior and inferior mesenteric ganglia of the guinea-pig. Cell Tissue Res 271:333–339

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP, Bornstein JC, Furness JB (1994) Electrophysiological and morphological classification of myenteric neurons in the proximal colon of the guinea-pig. Neuroscience 60:227–244

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    PubMed  CAS  Google Scholar 

  • Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Meth 133:99–107

    Article  Google Scholar 

  • Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47

    Article  PubMed  CAS  Google Scholar 

  • Quinson N, Robbins HL, Clark MJ, Furness JB (2001) Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum. Cell Tissue Res 305:3–9

    Article  PubMed  CAS  Google Scholar 

  • Reiche D, Pfannkuche H, Michel K, Hoppe S, Schemann M (1999) Immunohistochemical evidence for the presence of calbindin containing neurones in the myenteric plexus of the guinea-pig stomach. Neurosci Lett 270:71–74

    Article  PubMed  CAS  Google Scholar 

  • Reiche D, Huber K, Hoppe S, Schemann M (2001) Neurochemically distinct myenteric neurone populations containing calbindin have specific distribution patterns around the circumference of the gastric corpus. Cell Tissue Res 303:319–328

    Article  PubMed  CAS  Google Scholar 

  • Sayer RJ, Turnbull CI, Hubbard MJ (2000) Calbindin28 kDa is specifically associated with extranuclear constituents of the dense particulate fraction. Cell Tissue Res 302:171–180

    Article  PubMed  CAS  Google Scholar 

  • Schemann M, Wood JD (1989a) Electrical behaviour of myenteric neurones in the gastric corpus of the guinea-pig. J Physiol 417:501–518

    PubMed  CAS  Google Scholar 

  • Schemann M, Wood JD (1989b) Synaptic behaviour of myenteric neurones in the gastric corpus of the guinea-pig. J Physiol 417:519–535

    PubMed  CAS  Google Scholar 

  • Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178

    Article  PubMed  CAS  Google Scholar 

  • Song ZM, Brookes SJ, Costa M (1991) Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. Neurosci Lett 129:294–298

    Article  PubMed  CAS  Google Scholar 

  • Steele PA, Brookes SJ, Costa M (1991) Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea-pig small intestine. Neuroscience 45:227–239

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Tack JF, Wood JD (1992) Electrical behaviour of myenteric neurones in the gastric antrum of the guinea-pig. J Physiol 447:49–66

    PubMed  CAS  Google Scholar 

  • Thorens B, Roth J, Norman AW, Perrelet A, Orci L (1982) Immunocytochemical localization of the vitamin D-dependent calcium binding protein in chick duodenum. J Cell Biol 94:115–122

    Article  PubMed  CAS  Google Scholar 

  • Timmermans J-P, Adriaensen D, Cornelissen W, Scheuermann DW (1997) Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved in mucosal reflexes. Comp Biochem Physiol 118:331–340

    Article  CAS  Google Scholar 

  • Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2002) Neurochemical identification of enteric neurons expressing P2X3 receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  CAS  Google Scholar 

  • Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, Blümcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44:1167–1171

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Interuniversity Pole of Attraction Programme of the Federal Services for Scientific, Technical and Cultural Affairs (IUPA-P5/20), a concerted research project granted by the Special Research Fund of the University of Antwerp (GOA-2004/2007) and a grant of the Flemish Foundation for Scientific Research (FWO-G.0185.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Timmermans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassauw, L.V., Wu, M., Jonge, F.D. et al. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem Cell Biol 124, 369–377 (2005). https://doi.org/10.1007/s00418-005-0019-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0019-7

Keywords

Navigation