Skip to main content

Advertisement

Log in

Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS)

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe a distinct vitreomacular interface disorder (VMID) termed Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS).

Methods

A case series including forty-seven eyes of 47 patients. The included eyes must present an irregular foveal contour on optical coherence tomography (OCT) and a pathologically increased autofluorescent signal at the fovea on blue-light fundus autofluorescence (B-FAF). Main outcome measures were morphologic characteristics of the lesions, logarithm of minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA), and central foveal thickness (CFT).

Results

The following two types of FATIAS were identified: (1) the step type characterized by an asymmetric contour of the foveal pit and by a tissue of medium reflectivity on the foveal surface and (2) the rail type characterized by a shallow foveal pit and a rail of tissue of medium reflectivity on the foveal surface. The outer retinal bands were continuous in all cases. Both types presented with an area of increased B-FAF signal, usually bilobed in the step type and round and centered on the foveal pit in the rail type. LogMAR BCVA was 0.09 ± 0.1 and 0.1 ± 0.1 (P = 0.91), and CFT was 197.8 ± 9.7 and 202.2 ± 13.2 (P = 0.19) in the step and in the rail group, respectively.

Conclusions

We describe a distinct VMID named FATIAS. Two types of FATIAS may be appreciated with SD-OCT and B-FAF analyses, the step and the rail type. Both are characterized by abnormal foveal contour and autofluorescence signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM Jr, Yannuzzi LA (2008) Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol 145:509–517. https://doi.org/10.1016/j.ajo.2007.10.014

    Article  PubMed  Google Scholar 

  2. Sonmez K, Capone A Jr, Trese MT, Williams GA (2008) Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes. Retina 28:1207–1214. https://doi.org/10.1097/IAE.0b013e31817b6b0f

    Article  PubMed  Google Scholar 

  3. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. https://doi.org/10.1016/j.ophtha.2013.07.042

    Article  PubMed  Google Scholar 

  4. Gattoussi S, Buitendijk GHS, Peto T, Leung I, Schmitz-Valckenberg S, Oishi A, Wolf S, Deák G, Delcourt C, Klaver CCW, Korobelnik JF, European Eye Epidemiology (E3) consortium (2018) The European Eye Epidemiology spectral-domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta Ophthalmol. https://doi.org/10.1111/aos.13883 Accessed 22 Sept 2018

    Article  Google Scholar 

  5. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409. https://doi.org/10.1097/IAE.0b013e318164a907

    Article  PubMed  Google Scholar 

  6. von Rukmann A, Fitzke FW, Gregor ZJ (1998) Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 82:346–351

    Article  Google Scholar 

  7. Bottoni F, Carmassi L, Cigada M, Moschini S, Bergamini F (2008) Diagnosis of macular pseudoholes and lamellar macular holes: is optical coherence tomography the “gold standard”? Br J Ophthalmol 92:635–639. https://doi.org/10.1136/bjo.2007.127597

    Article  CAS  PubMed  Google Scholar 

  8. dell’ Omo R, Virgili G, Rizzo S, De Turris S, Coclite G, Giorgio D, dell’ Omo E, Costagliola C (2017) Role of lamellar hole-associated epiretinal proliferation in lamellar macular holes. Am J Ophthalmol 175:16–29. https://doi.org/10.1016/j.ajo.2016.11.007

    Article  Google Scholar 

  9. dell’ Omo R, Vogt D, Schumann RG, De Turris S, Virgili G, Staurenghi G, Cereda M, Costagliola C, Priglinger SG, Bottoni F (2018) The relationship between blue-fundus autofluorescence and optical coherence tomography in eyes with lamellar macular holes. Invest Ophthalmol Vis Sci 59:3079–3087. https://doi.org/10.1167/iovs.18-24379

    Article  Google Scholar 

  10. dell’ Omo R, Cifariello F, dell’ Omo E, De Lena A, Di Iorio R, Filippelli M, Costagliola C (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Invest Ophthalmol Vis Sci 54:7803–7811. https://doi.org/10.1167/iovs.13-12817

    Article  Google Scholar 

  11. Pang CE, Spaide RF, Freund KB (2014) Epiretinal proliferation seen in association with lamellar macular holes: a distinct clinical entity. Retina 34:1513–1523. https://doi.org/10.1097/IAE.0000000000000163

    Article  PubMed  Google Scholar 

  12. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615. https://doi.org/10.1056/NEJMoa1110823

    Article  CAS  PubMed  Google Scholar 

  13. Gaudric A, Aloulou Y, Tadayoni R, Massin P (2013) Macular pseudoholes with lamellar cleavage of their edge remain pseudoholes. Am J Ophthalmol 155:733–742. https://doi.org/10.1016/j.ajo.2012.10.021

    Article  PubMed  Google Scholar 

  14. Govetto A, Dacquay Y, Farajzadeh M, Platner E, Hirabayashi K, Hosseini H, Schwartz SD, Hubschman JP (2016) Lamellar macular hole: two distinct clinical entities? Am J Ophthalmol 164:99–109. https://doi.org/10.1016/j.ajo.2016.02.008

    Article  PubMed  Google Scholar 

  15. Zambarakji HJ, Schlottmann P, Tanner V, Assi A, Gregor ZJ (2005) Macular microholes: pathogenesis and natural history. Br J Ophthalmol 89:189–193

    Article  CAS  Google Scholar 

  16. Scheibe P, Zocher MT, Francke M, Rauscher FG (2016) Analysis of foveal characteristics and their asymmetries in the normal population. Exp Eye Res 148:1–11. https://doi.org/10.1016/j.exer.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  17. Wong AC, Chan CW, Hui SP (2005) Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 19:292–297

    Article  CAS  Google Scholar 

  18. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634. https://doi.org/10.1167/iovs.10-5886

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grover S, Murthy RK, Brar VS, Chalam KV (2009) Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (Spectralis). Am J Ophthalmol 148:266–271. https://doi.org/10.1016/j.ajo.2009.03.006

    Article  PubMed  Google Scholar 

  20. Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2010) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye (Lond) 24:251–258. https://doi.org/10.1038/eye.2009.76

    Article  CAS  Google Scholar 

  21. Trieschmann M, Spital G, Lommatzsch A, van Kuijk E, Fitzke F, Bird AC, Pauleikhoff D (2003) Macular pigment: quantitative analysis on autofluorescence images. Graefes Arch Clin Exp Ophthalmol 24:1006–1012

    Article  Google Scholar 

  22. Gass JD (1999) Müller cell cone, an overlooked part of the anatomy of the fovea centralis (1999). Arch Ophthalmol 117:821–823

    Article  CAS  Google Scholar 

  23. Syrbe S, Kuhrtb H, Gärtnerc U, Habermann G, Wiedemann P, Bringmann A, Reichenbach A (2018) Müller glial cells of the primate foveola: an electron microscopical study. Exp Eye Res 167:110–117. https://doi.org/10.1016/j.exer.2017.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto dell’Omo.

Ethics declarations

Conflict of interests

R. dell’Omo declares that he has no conflict of interest; S. De Turris declares that she has no conflict of interest; C. Costagliola declares that he has no conflict of interest; G. Virgili declares that he has no conflict of interest; R.G. Schumann declares that she has no conflict of interest; M. Cereda declares that he is a consultant for Bayer; I. D’Agostino declares that she has no conflict of interest; E. dell’Omo declares that he has no conflict of interest; F. Bottoni declares that he is a consultant for Bayer, Novartis, and Alcon.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dell’Omo, R., De Turris, S., Costagliola, C. et al. Foveal Abnormality associated with epiretinal Tissue of medium reflectivity and Increased blue-light fundus Autofluorescence Signal (FATIAS). Graefes Arch Clin Exp Ophthalmol 257, 2601–2612 (2019). https://doi.org/10.1007/s00417-019-04451-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04451-7

Keywords

Navigation