Skip to main content

Advertisement

Log in

Isoforms of TGF-β in the aqueous humor of patients with pseudoexfoliation syndrome and a possible association with the long-term stability of the capsular bag after cataract surgery

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Pseudoexfoliation syndrome (PEXS) may go along with capsular bag shrinkage and luxation. In the present study, we focus on an association of isoforms of TGF-β with capsular bag luxation.

Methods

Aqueous humor was collected intraoperatively from 20 healthy controls and from 73 otherwise healthy patients with PEXS [PEXS without complications (PEX, n = 33), late PEXS with glaucoma (PEXG, n = 30) and with IOL and capsular bag luxation (PEXL, n = 10)]. The concentrations of TGF-β1, TGF-β2 and TGF-β3 were compared using the Bio-Plex® multiplex beads system based on the non-parametric Kruskal–Wallis H test (p < 0.01).

Results

Concentrations of TGF-β 1, TGF-β 2 and TGF-β 3 were higher in the sub-groups PEX and PEXG than in controls (TGF-β 1; p = 0.009 and 0.0005; TGF-β 2; p = 0.002 and 0.005 and TGF-β 3; 0.0005 and 0.0005; respectively), whereas for TGF β2, no significant difference between controls and PEXL was revealed (p = 1.0). TGF-β2 concentrations were elevated in a similar degree in early PEX and PEXG, but not in PEXL compared to controls (p = 0.002). The concentrations of of TGF-β 1 and TGF-β 3 increased in parallel with the progression of disease. The levels of TGF-β 3, however, did not attain pathophysiological levels (>100 pg/ml) in any group.

Conclusions

A stage-dependent increase in the concentrations of TGF-β1 and TGF-β3, but not of TGF-β2, accords to the shrinkage of the capsular bag. This could increase the tension on the zonular fibers and contribute to luxation of the capsular bag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gartaganis SP, Patsoukis NE, Nikolopoulos DK, Georgiou CD (2007) Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye (Lond) 21:1406–1411

    Article  CAS  Google Scholar 

  2. Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C (2015) Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 52:12–27

    Article  CAS  PubMed  Google Scholar 

  3. Arnarsson A, Damji KF, Sasaki H, Sverrisson T, Jonasson F (2009) Pseudoexfoliation in the Reykjavik eye study: five-year incidence and changes in related ophthalmologic variables. Am J Ophthalmol 148:291–297

    Article  PubMed  Google Scholar 

  4. Drolsum L, Ringvold A, Nicolaissen B (2007) Cataract and glaucoma surgery in pseudoexfoliation syndrome: a review. Acta Ophthalmol Scand 85:810–821

    Article  PubMed  Google Scholar 

  5. Asano N, Schlötzer-Schrehardt U, Naumann GO (1995) A histopathologic study of iris changes in pseudoexfoliation syndrome. Ophthalmology 102:1279–1290

    Article  CAS  PubMed  Google Scholar 

  6. Conway RM, Schlötzer-Schrehardt U, Küchle M, Naumann GO (2004) Pseudoexfoliation syndrome: pathological manifestations of relevance to intraocular surgery. Clin Exp Ophthalmol 32:199–210

    Article  PubMed  Google Scholar 

  7. Lütjen-Drecoll E (2005) Morphological changes in glaucomatous eyes and the role of TGF β2 for the pathogenesis of the disease. Exp Eye Res 81:1–4

    Article  PubMed  Google Scholar 

  8. Schlötzer-Schrehardt U (2012) New pathogenetic insights into pseudoexfoliation syndrome/glaucoma. Therapeutically relevant? Ophthalmologe 109:944–951

    Article  PubMed  Google Scholar 

  9. Liu E, Cole S, Werner L, Hengerer F, Mamalis N, Kohnen T (2015) Pathologic evidence of pseudoexfoliation in cases of in-the-bag intraocular lens subluxation or dislocation. J Cataract Refract Surg 41:929–935

    Article  PubMed  Google Scholar 

  10. Schmack I, Auffarth GU (2016) Distribution of pseudoexfoliation material on anterior segment structures in human autopsy eyes after cataract surgery with intraocular lens implantation. Int Ophthalmol 36:341–346

    Article  PubMed  Google Scholar 

  11. Thanigasalam T, Sahoo S, Kyaw Soe HH (2014) Posterior capsule rupture during phacoemulsification among patients with Pseudoexfoliation-is there a correlation? Malays J Med Sci 21:51–53

    PubMed  PubMed Central  Google Scholar 

  12. Østern AE, Saethre M, Sandvik G, Råen M, Drolsum L (2013) Posterior capsular opacification in patients with pseudoexfoliation syndrome: a long-term perspective. Acta Ophthalmol 91:231–235

    Article  PubMed  Google Scholar 

  13. Shingleton BJ, Neo YN, Cvintal V, Shaikh AM, Liberman P, O'Donoghue MW (2017) Outcome of phacoemulsification and intraocular lens implantion in eyes with pseudoexfoliation and weak zonules. Acta Ophthalmol 95:182–187

    Article  PubMed  Google Scholar 

  14. Ronci M, Sharma S, Martin S, Craig JE, Voelcker NH (2013) MALDI MS imaging analysis of apolipoprotein E and lysyl oxidase-like 1 in human lens capsules affected by pseudoexfoliation syndrome. J Proteome 82:27–34

    Article  CAS  Google Scholar 

  15. Khan TT, Li G, Navarro ID, Kastury RD, Zeil CJ, Semchyshyn TM, Moya FJ, Epstein DL, Gonzalez P, Challa P (2010) LOXL1 expression in lens capsule tissue specimens from individuals with pseudoexfoliation syndrome and glaucoma. Mol Vis 16:2236–2241

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zenkel M, Krysta A, Pasutto F, Juenemann A, Kruse FE, Schlötzer-Schrehardt U (2011) Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 52:8488–8495

    Article  CAS  PubMed  Google Scholar 

  17. Schlötzer-Schrehardt U, Zenkel M, Küchle M, Sakai LY, Naumann GO (2001) Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res 73(76e):5–80

    Google Scholar 

  18. Kottler UB, Jünemann AG, Aigner T, Zenkel M, Rummelt C, Schlötzer-Schrehardt U (2005) Comparative effects of TGF-beta 1 and TGF-beta 2 on extracellular matrix production, proliferation, migration, and collagen contraction of human Tenon's capsule fibroblasts in pseudoexfoliation and primary open-angle glaucoma. Exp Eye Res 80:121–134

    Article  CAS  PubMed  Google Scholar 

  19. Takai Y, Tanito M, Ohira A (2012) Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci 53:241–247

    Article  CAS  PubMed  Google Scholar 

  20. Zandi S, Tappainer C, Pfister IB, Garweg JG (2016) Vitreal cytokine-profile differences between eyes with epiretinal membrane or macular holes. Invest Ophthalmol Vis Sci 57:6320–6326

    Article  CAS  PubMed  Google Scholar 

  21. Meyer-ter-Vehn T, Sieprath S, Katzenberger B, Gebhardt S, Grehn F, Schlunck G (2006) Contractility as a prerequisite for TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 47:4895–4904

    Article  PubMed  Google Scholar 

  22. Schlötzer-Schrehardt U, Küchle M, Jünemann A, Naumann GO (2002) Relevance of the pseudoexfoliation syndrome for the glaucomas. Ophthalmologe 99:683–690

    Article  PubMed  Google Scholar 

  23. Djordjević-Jocić J, Zlatanović G, Veselinović D, Jovanović P, Djordjević V, Zvezdanović L, Stanković-Babić G, Vujanović M, Cekić S, Zenkel M, Schlotzer-Schrehardt U (2012) Transforming growth factor beta1, matrix-metalloproteinase-2 and its tissue inhibitor in patients with pseudoexfoliation glaucoma/syndrome. Vojnosanit Pregl 69:231–236

    Article  PubMed  Google Scholar 

  24. Hong S, Han SH, Kim CY, Kim KY, Song YK, Seong GJ (2015) Brimonidine reduces TGF-beta-induced extracellular matrix synthesis in human Tenon's fibroblasts. BMC Ophthalmol 15:54

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zenkel M, Lewczuk P, Jünemann A, Kruse FE, Naumann GO, Schlötzer-Schrehardt U (2010) Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol 176:2868–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simavli H, Tosun M, Bucak YY, Erdurmus M, Ocak Z, Onder HI, Acar M (2015) Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol 253:1161–1167

    Article  CAS  PubMed  Google Scholar 

  27. Uçakhan OO, Karel F, Kanpolat A, Devrim E, Durak I (2006) Superoxide dismutase activity in the lens capsule of patients with pseudoexfoliation syndrome and cataract. J Cataract Refract Surg 32:618–622

    Article  PubMed  Google Scholar 

  28. Strzalka-Mrozik B, Prudlo L, Kimsa MW, Kimsa MC, Kapral M, Nita M, Mazurek U (2013) Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol Vis 19:1341–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zenkel M, Kruse FE, Jünemann AG, Naumann GO, Schlötzer-Schrehardt U (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Ophthalmol Vis Sci 47:1982–1990

    Article  PubMed  Google Scholar 

  30. Leng F, Liu P, Li H, Zhang J (2011) Long-term topical antiglaucoma medications cause enhanced Tenon's capsule fibroblast proliferation and abnormal TGF-β and MMP expressions: potential effects on glaucoma filtering surgery. Curr Eye Res 36:301–309

    Article  CAS  PubMed  Google Scholar 

  31. Browne JG, Ho SL, Kane R, Oliver N, Clark AF, O'Brien CJ, Crean JK (2011) Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 52:3660–3666

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal P, Daher AM, Agarwal R (2015) Aqueous humor TGF-β2 levels in patients with open-angle glaucoma: a meta-analysis. Mol Vis 21:612–620

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gayathri R, Coral K, Sharmila F, Sripriya S, Sripriya K, Manish P, Shantha B, Ronnie G, Vijaya L, Narayanasamy A (2016) Correlation of aqueous humor Lysyl oxidase activity with TGF-ß levels and LOXL1 genotype in Pseudoexfoliation. Curr Eye Res 41:1331–1338

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justus G. Garweg.

Ethics declarations

Financial disclosures

SZ: none; IP: none; CG: none. JGG advises several pharmaceutical companies (including Novartis, Bayer, Alcon, Allergan and AbbVie). None of the authors received financial support for this study or have conflicts of interest with the data that are presented therein.

Funding

The study was partially supported by a grant from the Lindenhof Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garweg, J.G., Zandi, S., Gerhardt, C. et al. Isoforms of TGF-β in the aqueous humor of patients with pseudoexfoliation syndrome and a possible association with the long-term stability of the capsular bag after cataract surgery. Graefes Arch Clin Exp Ophthalmol 255, 1763–1769 (2017). https://doi.org/10.1007/s00417-017-3724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3724-8

Keywords

Navigation