Skip to main content

Advertisement

Log in

Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine serum and aqueous xanthine oxidase (XO) levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation (PEX).

Methods

In this prospective study, serum, aqueous and anterior lens capsules were taken from 21 patients with PEX and 23 normal subjects who had undergone routine cataract surgery. Serum and aqueous XO levels were analyzed using the colorimetric method. mRNA expression of XO in anterior lens epithelial cells was evaluated using reverse transcription polymerase chain reaction analysis.

Results

Serum XO levels (means ± standard deviations) were 207.0 ± 86.1 IU/mL and 240.6 ± 114.1 IU/mL in the normal and PEX groups, respectively (p = 0.310). Aqueous XO levels (means ± standard deviations) were 65.5 ± 54.3 IU/mL in the normal group and 130.5 ± 117.4 IU/mL in the PEX group (p = 0.028). There was a 2.9 fold decrease in mRNA expression in anterior lens epithelial cells of PEX, which is significantly lower than the normal group (p = 0.01).

Conclusions

Higher aqueous XO levels lacking associated different serum XO suggests higher oxidative stress in the aqueous. Higher aqueous XO levels in PEX with decreased mRNA expression in anterior lens epithelial cells indicate possible overexpression of XO in other structures related to the aqueous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lindberg J (1917) Kliniska undersokningar over depigmentering av pupillarranden odr genomlysbarhet av iris vid fall av alderstarr samt i normala ogon hos gamla personer. Inaug Diss Helsingfors 18:87–89

    Google Scholar 

  2. Streeten BW, Li ZY, Wallace RN, Eagle RC Jr, Keshgegian AA (1992) Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol 110(12):1757–1762

    Article  CAS  PubMed  Google Scholar 

  3. Yagci R, Ersoz I, Erdurmus M, Gurel A, Duman S (2008) Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye (London) 22(1):128–131. doi:10.1038/sj.eye.6702751

    Article  CAS  Google Scholar 

  4. Yagci R, Gurel A, Ersoz I, Karadag R, Hepsen IF, Duman S (2009) The activities of paraoxonase, xanthine oxidase, adenosine deaminase and the level of nitrite in pseudoexfoliation syndrome. Ophthalmic Res 42(3):155–159. doi:10.1159/000229306

    Article  CAS  PubMed  Google Scholar 

  5. Tosun M, Erdurmus M, Bugdayci G, Celebi S, Alcelik A (2012) Aqueous humour and serum concentration of asymmetric dimethyl arginine in pseudoexfoliation syndrome. Br J Ophthalmol 96(8):1137–1140. doi:10.1136/bjophthalmol-2012-301901

    Article  PubMed  Google Scholar 

  6. Selin JZ, Lindblad BE, Rautiainen S, Michaelsson K, Morgenstern R, Bottai M, Basu S, Wolk A (2014) Are increased levels of systemic oxidative stress and inflammation associated with age-related cataract? Antioxid Redox Signal 21(5):700–704. doi:10.1089/ars.2014.5853

    Article  CAS  PubMed  Google Scholar 

  7. Ugurlu N, Asik MD, Yulek F, Neselioglu S, Cagil N (2013) Oxidative stress and anti-oxidative defence in patients with age-related macular degeneration. Curr Eye Res 38(4):497–502. doi:10.3109/02713683.2013.774023

    Article  CAS  PubMed  Google Scholar 

  8. Harman D (1993) Free radical involvement in aging. Pathophysiology and therapeutic implications. Drugs Aging 3(1):60–80

    Article  CAS  PubMed  Google Scholar 

  9. Goyal A, Srivastava A, Sihota R, Kaur J (2014) Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res 39(8):823–829. doi:10.3109/02713683.2011.556299

    Article  CAS  PubMed  Google Scholar 

  10. Turk A, Aykut M, Akyol N, Kola M, Mentese A, Sumer A, Alver A, Erdol H (2014) Serum anti-carbonic anhydrase antibodies and oxidant-antioxidant balance in patients with acute anterior uveitis. Ocul Immunol Inflamm 22(2):127–132. doi:10.3109/09273948.2013.830753

    Article  CAS  PubMed  Google Scholar 

  11. Parks DA, Granger DN (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548:87–99

    CAS  PubMed  Google Scholar 

  12. Malik UZ, Hundley NJ, Romero G, Radi R, Freeman BA, Tarpey MM, Kelley EE (2011) Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production. Free Radic Biol Med 51(1):179–184. doi:10.1016/j.freeradbiomed.2011.04.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5(1):265–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Helbig H, Schlotzer-Schrehardt U, Noske W, Kellner U, Foerster MH, Naumann GO (1994) Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome. Ger J Ophthalmol 3(3):148–153

    CAS  PubMed  Google Scholar 

  15. Newaz MA, Yousefipour Z, Oyekan A (2006) Oxidative stress-associated vascular aging is xanthine oxidase-dependent but not NAD(P)H oxidase-dependent. J Cardiovasc Pharmacol 48(3):88–94. doi:10.1097/01.fjc.0000245402.62864.0a

    Article  CAS  PubMed  Google Scholar 

  16. Naji M, Naji F, Suran D, Gracner T, Kanic V, Pahor D (2008) Systemic endothelial dysfunction in patients with pseudoexfoliation syndrome. Klin Monatsbl Augenheilkd 225(11):963–967. doi:10.1055/s-2008-1027633

    Article  CAS  PubMed  Google Scholar 

  17. Atalar PT, Atalar E, Kilic H, Abbasoglu OE, Ozer N, Aksoyek S, Ovunc K, Ozmen F, Gursel E (2006) Impaired systemic endothelial function in patients with pseudoexfoliation syndrome. Int Heart J 47(1):77–84

    Article  PubMed  Google Scholar 

  18. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606. doi:10.1113/jphysiol.2003.055913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yildirim Z, Yildirim F, Ucgun NI, Sepici-Dincel A (2013) The role of the cytokines in the pathogenesis of pseudoexfoliation syndrome. Int J Ophthalmol 6(1):50–53. doi:10.3980/j.issn.2222-3959.2013.01.10

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Uysal S, Unal ZN, Erdogan S, Akyol S, Ramazan Yigitoglu M, Hirohata S, Isik B, Demircan K (2013) Augmentation of ADAMTS9 gene expression by IL-1beta is reversed by NFkappaB and MAPK inhibitors, but not PI3 kinase inhibitors. Cell Biochem Funct 31(7):539–544. doi:10.1002/cbf.2932

    CAS  PubMed  Google Scholar 

  21. Strzalka-Mrozik B, Prudlo L, Kimsa MW, Kimsa MC, Kapral M, Nita M, Mazurek U (2013) Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol Vis 19:1341–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Zoric L, Miric D, Milenkovic S, Jovanovic P, Trajkovic G (2006) Pseudoexfoliation syndrome and its antioxidative protection deficiency as risk factors for age-related cataract. Eur J Ophthalmol 16(2):268–273

    CAS  PubMed  Google Scholar 

  23. Tosun M, Yagci R, Erdurmus M (2014) Glaucoma and antioxidant status. In: Preedy VR (ed) Handbook of nutrition, diet and the eye, 1st edn. Elsevier, Whaltam, pp 87–96

    Chapter  Google Scholar 

  24. Guerciolini R, Szumlanski C, Weinshilboum RM (1991) Human liver xanthine oxidase: nature and extent of individual variation. Clin Pharmacol Ther 50(6):663–672

    Article  CAS  PubMed  Google Scholar 

  25. Relling MV, Lin JS, Ayers GD, Evans WE (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 52(6):643–658

    Article  CAS  PubMed  Google Scholar 

  26. Aklillu E, Carrillo JA, Makonnen E, Bertilsson L, Ingelman-Sundberg M (2003) Xanthine oxidase activity is influenced by environmental factors in Ethiopians. Eur J Clin Pharmacol 59(7):533–536. doi:10.1007/s00228-003-0653-8

    Article  CAS  PubMed  Google Scholar 

  27. Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini EK (2007) In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr 21(2):190–200. doi:10.1002/bmc.736

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann N, Wunscher M, Schlotzer-Schrehardt U, Erb C (2014) Corneal endothelial cell density and its correlation with the severity of pseudoexfoliation. Klin Monatsbl Augenheilkd 231(2):158–163. doi:10.1055/s-0033-1360308

    Article  CAS  PubMed  Google Scholar 

  29. Koliakos GG, Schlotzer-Schrehardt U, Konstas AG, Bufidis T, Georgiadis N, Dimitriadou A (2001) Transforming and insulin-like growth factors in the aqueous humour of patients with exfoliation syndrome. Graefes Arch Clin Exp Ophthalmol 239(7):482–487

    Article  CAS  PubMed  Google Scholar 

  30. Schlotzer-Schrehardt U, Zenkel M, Kuchle M, Sakai LY, Naumann GO (2001) Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res 73(6):765–780. doi:10.1006/exer.2001.1084

    Article  CAS  PubMed  Google Scholar 

  31. Doehner W, Anker SD (2005) Uric acid in chronic heart failure. Semin Nephrol 25(1):61–66

    Article  CAS  PubMed  Google Scholar 

  32. Mancino R, Di Pierro D, Varesi C, Cerulli A, Feraco A, Cedrone C, Pinazo-Duran MD, Coletta M, Nucci C (2011) Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis 17:1298–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Kinsey VE (1947) Transfer of ascorbic acid and related compounds across the blood-aqueous barrier. Am J Ophthalmol 30(10):1262–1266

    Article  CAS  PubMed  Google Scholar 

  34. Diehn JJ, Diehn M, Marmor MF, Brown PO (2005) Differential gene expression in anatomical compartments of the human eye. Genome Biol 6(9):R74. doi:10.1186/gb-2005-6-9-r74

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zenkel M, Poschl E, von der Mark K, Hofmann-Rummelt C, Naumann GO, Kruse FE, Schlotzer-Schrehardt U (2005) Differential gene expression in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 46(10):3742–3752. doi:10.1167/iovs.05-0249

    Article  PubMed  Google Scholar 

  36. Gonen T, Gonen KA, Guzel S (2014) What is the effect of pseudoexfoliation syndrome on renal function in patients without glaucoma? Curr Eye Res 39(2):188–193. doi:10.3109/02713683.2013.834940

    Article  PubMed  Google Scholar 

Download references

Disclosures

None.

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Simavli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simavli, H., Tosun, M., Bucak, Y.Y. et al. Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol 253, 1161–1167 (2015). https://doi.org/10.1007/s00417-015-3043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3043-x

Keywords

Navigation