Skip to main content

Advertisement

Log in

Correlation between outer retinal layer thickness and cone density in patients with resolved central serous chorioretinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to observe photoreceptors and outer retinal layer thickness by using an adaptive optics (AO) fundus camera and spectral domain optical coherence tomography (SD-OCT) in patients with central serous chorioretinopathy (CSC).

Methods

Twelve eyes of 12 patients with resolved CSC were studied. After subretinal fluid (SRF) had resolved, AO images of the macula were obtained by using the rtx1TM AO fundus camera (Imagine Eyes, France). Cones in the nasal and temporal areas of the macula, 0.5 mm from the foveal center, were counted. Outer retinal layer thickness was measured as the distance between the outer border of external limiting membrane (ELM) and the inner border of retinal pigment epithelium (RPE) at 0.5 mm from the foveal center. The first measurement was performed after resolution of the subretinal fluid and was defined as the baseline. Then, the second measurement was performed in the same location after 12 months.

Results

In the eyes with resolved CSC, the mean logMAR values of visual acuity at baseline and 12 months were 0.16 and 0.01, respectively (p = 0.0023). The mean cone densities at baseline and 12 months were 12,213 and 17,146 cones/mm2, respectively. The mean cone densities at 12 months were significantly increased compared to baseline (p = 0.0014). The mean outer retinal layer thickness at baseline (53.5 μm) was significantly thinner than that at 12 months (60.7 μm) (p = 0.0013). The mean cone densities were significantly correlated with outer retinal layer thickness and logMAR visual acuity.

Conclusions

Adaptive optics imaging revealed a gradual increase in the number of macular cone densities during 12 months in patients with resolved CSC, which was correlated with outer retinal layer thickness and visual acuity in a short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 63(Suppl):1–139

    Google Scholar 

  2. Klein ML, Van Buskirk EM, Friedman E, Gragoudas E, Chandra S (1974) Experience with nontreatment of central serous choroidopathy. Arch Ophthalmol 91:247–250

    Article  CAS  PubMed  Google Scholar 

  3. Yap EY, Robertson DM (1996) The long-term outcome of central serous chorioretinopathy. Arch Ophthalmol 114:689–692

    Article  CAS  PubMed  Google Scholar 

  4. Quin G, Liew G, Ho IV, Gillies M, Fraser-Bell S (2013) Diagnosis and interventions for central serous chorioretinopathy: review and update. Clin Experiment Ophthalmol 41:187–200. doi:10.1111/j.1442-9071.2012.02847.x

    Article  PubMed  Google Scholar 

  5. Piccolino FC, de la Longrais RR, Ravera G, Eandi CM, Ventre L, Abdollahi A, Manea M (2005) The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 139:87–99. doi:10.1016/j.ajo.2004.08.037

    Article  PubMed  Google Scholar 

  6. Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N (2007) Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 114:2197–2207. doi:10.1016/j.ophtha.2007.02.015

    Article  PubMed  Google Scholar 

  7. Matsumoto H, Sato T, Kishi S (2009) Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 148:105–110 e101. doi:10.1016/j.ajo.2009.01.018

    Article  PubMed  Google Scholar 

  8. Yalcinbayir O, Gelisken O, Akova-Budak B, Ozkaya G, Gorkem Cevik S, Yucel AA (2014) Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina 34:705–712. doi:10.1097/IAE.0000000000000001

    Article  PubMed  Google Scholar 

  9. Hasegawa T, Okamoto M, Masuda N, Ueda T, Ogata N (2015) Relationship between foveal microstructures and visual outcomes in eyes with resolved central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 253:343–350. doi:10.1007/s00417-014-2695-2

    Article  PubMed  Google Scholar 

  10. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619. doi:10.1097/IAE.0b013e3182247535

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ross DH, Clark ME, Godara P, Huisingh C, McGwin G, Owsley C, Litts KM, Spaide RF, Sloan KR, Curcio CA (2015) RefMoB, a Reflectivity Feature Model-Based Automated Method for Measuring Four Outer Retinal Hyperreflective Bands in Optical Coherence Tomography. Invest Ophthalmol Vis Sci 56:4166–4176. doi:10.1167/iovs.14-15256

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto Y, Saito W, Saito M, Hirooka K, Fujiya A, Yoshizawa C, Noda K, Ishida S (2014) Retinal outer layer thickness increases after vitrectomy for epiretinal membrane, and visual improvement positively correlates with photoreceptor outer segment length. Graefes Arch Clin Exp Ophthalmol 252:219–226. doi:10.1007/s00417-013-2432-2

    Article  PubMed  Google Scholar 

  13. Hashimoto Y, Saito W, Fujiya A, Yoshizawa C, Hirooka K, Mori S, Noda K, Ishida S (2015) Changes in Inner and Outer Retinal Layer Thicknesses after Vitrectomy for Idiopathic Macular Hole: Implications for Visual Prognosis. PLoS ONE 10, e0135925. doi:10.1371/journal.pone.0135925

    Article  PubMed  PubMed Central  Google Scholar 

  14. Terauchi G, Shinoda K, Matsumoto CS, Watanabe E, Matsumoto H, Mizota A (2015) Recovery of photoreceptor inner and outer segment layer thickness after reattachment of rhegmatogenous retinal detachment. Br J Ophthalmol 99:1323–1327. doi:10.1136/bjophthalmol-2014-306252

    Article  PubMed  Google Scholar 

  15. Rossi EA, Chung M, Dubra A, Hunter JJ, Merigan WH, Williams DR (2011) Imaging retinal mosaics in the living eye. Eye (Lond) 25:301–308. doi:10.1038/eye.2010.221

    Article  CAS  Google Scholar 

  16. Ooto S, Hangai M, Sakamoto A, Tsujikawa A, Yamashiro K, Ojima Y, Yamada Y, Mukai H, Oshima S, Inoue T, Yoshimura N (2010) High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. Ophthalmology 117:1800–1809. doi:10.1016/j.ophtha.2010.01.042, 1809 e1801-1802

    Article  PubMed  Google Scholar 

  17. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000. doi:10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

  18. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367

    Article  CAS  PubMed  Google Scholar 

  19. Saleh M, Debellemaniere G, Meillat M, Tumahai P, Bidaut Garnier M, Flores M, Schwartz C, Delbosc B (2014) Quantification of cone loss after surgery for retinal detachment involving the macula using adaptive optics. Br J Ophthalmol 98:1343–1348. doi:10.1136/bjophthalmol-2013-304813

    Article  CAS  PubMed  Google Scholar 

  20. Park SP, Chung JK, Greenstein V, Tsang SH, Chang S (2013) A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope. Exp Eye Res 108:1–9. doi:10.1016/j.exer.2012.12.011

    Article  PubMed  Google Scholar 

  21. Erickson PA, Fisher SK, Anderson DH, Stern WH, Borgula GA (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest Ophthalmol Vis Sci 24:927–942

    CAS  PubMed  Google Scholar 

  22. Lewis GP, Charteris DG, Sethi CS, Fisher SK (2002) Animal models of retinal detachment and reattachment: identifying cellular events that may affect visual recovery. Eye 16:375–387. doi:10.1038/sj.eye.6700202

    Article  CAS  PubMed  Google Scholar 

  23. Lewis GP, Sethi CS, Linberg KA, Charteris DG, Fisher SK (2003) Experimental retinal reattachment: a new perspective. Mol Neurobiol 28:159–175. doi:10.1385/MN:28:2:159

    Article  CAS  PubMed  Google Scholar 

  24. Fisher SK, Lewis GP, Linberg KA, Verardo MR (2005) Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24:395–431. doi:10.1016/j.preteyeres.2004.10.004

    Article  PubMed  Google Scholar 

  25. Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH (2003) Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 44:416–425

    Article  PubMed  Google Scholar 

  26. Zhang Y, Cense B, Rha J, Jonnal RS, Gao W, Zawadzki RJ, Werner JS, Jones S, Olivier S, Miller DT (2006) High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt Express 14:4380–4394. doi:10.1364/OE.14.004380

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacob J, Paques M, Krivosic V, Dupas B, Couturier A, Kulcsar C, Tadayoni R, Massin P, Gaudric A (2015) Meaning of visualizing retinal cone mosaic on adaptive optics images. Am J Ophthalmol 159:118–123 e111. doi:10.1016/j.ajo.2014.09.043

    Article  PubMed  Google Scholar 

  28. Wong RL, Lee JW, Yau GS, Wong IY (2015) Relationship between Outer Retinal Layers Thickness and Visual Acuity in Diabetic Macular Edema. Biomed Res Int 2015:981471. doi:10.1155/2015/981471

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Hayashi.

Ethics declarations

Funding

No funding was received for this reserch.

Conflict of Interest

All authors have no financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and the national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, T., Ueda-Consolvo, T., Oiwake, T. et al. Correlation between outer retinal layer thickness and cone density in patients with resolved central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 254, 2347–2354 (2016). https://doi.org/10.1007/s00417-016-3403-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3403-1

Keywords

Navigation