Skip to main content

Advertisement

Log in

Optical coherence tomography measurements in compressive optic neuropathy associated with dysthyroid orbitopathy

  • Oculoplastics and Orbit
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The purpose of the study was to assess the influence of optic nerve compression on the peripapillary retinal nerve fiber layer (RNFL) thickness in eyes with acute and chronic dysthyroid optic neuropathy (DON).

Methods

Patients with DON and healthy control subjects underwent peripapillary optical coherence tomography (OCT) scanning with the Cirrus HD-OCT. Patients were classified as acute (within 6 months from the onset of DON) versus chronic (6 months or more from the onset of DON) DON. The thickness of peripapillary RNFL was compared between eyes with acute and chronic DON and control eyes. Baseline factors associated with visual acuity at the last visit were also analyzed.

Results

The mean temporal peripapillary RNFL thickness was thinnest in chronic DON at 66 ± 12 μm compared to 76 ± 8 μm in eyes with acute DON and 73 ± 12 μm in control eyes (p = 0.014). In a multivariable analysis, patients with greater inferior peripapillary RNFL thickness and younger age tended to have better visual acuity at the last visit (p = 0.034, odds ratio [OR] = 1.038 and p = 0.007, OR = 0.912, respectively).

Conclusions

Our data revealed a notable difference in temporal peripapillary RNFL thickness in eyes with chronic DON compared to eyes with acute DON and control eyes. We also found a significant association between inferior peripapillary RNFL thickness and visual acuity at the last visit. Thicker inferior peripapillary RNFL thickness was associated with better visual outcome. Further studies with large sample sizes using a prospective design should more clearly reveal the time aspect of the association between the onset of DON and the changes in peripapillary RNFL, and their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feldon SE, Muramatsu S, Weiner JM (1984) Clinical classification of graves’ ophthalmopathy. Identification of risk factors for optic neuropathy. Arch Ophthalmol 102:1469–1472

    Article  CAS  PubMed  Google Scholar 

  2. Dosso A, Safran AB, Sunaric G, Burger A (1994) Anterior ischemic optic neuropathy in graves’ disease. J Neuroophthalmol 14:170–174

    Article  CAS  PubMed  Google Scholar 

  3. Koorneef L, Schmidt ED (1990) The orbit: structure, autoantigens, and pathology. In: Wall J, How J (eds) Graves’ ophthalmopathy. Blackwell Scientific Publications, Oxford

    Google Scholar 

  4. Lane CM, Boschi A (2007) Management of very severe graves’ orbitopathy (dysthyroid optic neuropathy and corneal breakdown). In: Wiersinga WM, Kahaly GJ (eds) Graves’ orbitopathy: a multidisciplinary approach. Karger, Basel

    Google Scholar 

  5. Hutchison BM, Kyle PM (1995) Long-term visual outcome following orbital decompression for dysthyroid eye disease. Eye (Lond) 9(Pt 5):578–581. doi:10.1038/eye.1995.143

    Article  Google Scholar 

  6. Girod DA, Orcutt JC, Cummings CW (1993) Orbital decompression for preservation of vision in graves’ ophthalmopathy. Arch Otolaryngol Head Neck Surg 119:229–233

    Article  CAS  PubMed  Google Scholar 

  7. McNab AA (1997) Orbital decompression for thyroid orbitopathy. Aust N Z J Ophthalmol 25:55–61

    Article  CAS  PubMed  Google Scholar 

  8. Verity DH, Rose GE (2013) Acute thyroid eye disease (TED): principles of medical and surgical management. Eye (Lond) 27:308–319. doi:10.1038/eye.2012.284

    Article  CAS  Google Scholar 

  9. Bartley GB (1994) The epidemiologic characteristics and clinical course of ophthalmopathy associated with autoimmune thyroid disease in Olmsted County, Minnesota. Trans Am Ophthalmol Soc 92:477–588

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neigel JM, Rootman J, Belkin RI, Nugent RA, Drance SM, Beattie CW, Spinelli JA (1988) Dysthyroid optic neuropathy. The crowded orbital apex syndrome. Ophthalmology 95:1515–1521

    Article  CAS  PubMed  Google Scholar 

  11. Trobe JD, Glaser JS, Laflamme P (1978) Dysthyroid optic neuropathy. Clinical profile and rationale for management. Arch Ophthalmol 96:1199–1209

    Article  CAS  PubMed  Google Scholar 

  12. Jeon C, Shin JH, Woo KI, Kim YD (2012) Clinical profile and visual outcomes after treatment in patients with dysthyroid optic neuropathy. Korean J Ophthalmol 26:73–79. doi:10.3341/kjo.2012.26.2.73

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130

    Article  CAS  PubMed  Google Scholar 

  14. Minckler DS, Tso MO, Zimmerman LE (1976) A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol 82:741–757

    Article  CAS  PubMed  Google Scholar 

  15. Tso MO, Hayreh SS (1977) Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol 95:1458–1462

    Article  CAS  PubMed  Google Scholar 

  16. Fjeldstad C, Bemben M, Pardo G (2011) Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. J Clin Neurosci 18:1469–1472. doi:10.1016/j.jocn.2011.04.008

    Article  PubMed  Google Scholar 

  17. Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, Martin J, Fernandez J (2011) Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci 52:4124–4131. doi:10.1167/iovs.10-6643

    Article  PubMed  Google Scholar 

  18. Rebolleda G, Garcia-Garcia A, Won Kim HR, Munoz-Negrete FJ (2011) Comparison of retinal nerve fiber layer measured by time domain and spectral domain optical coherence tomography in optic neuritis. Eye (Lond) 25:233–238. doi:10.1038/eye.2010.206

    Article  CAS  Google Scholar 

  19. Rebolleda G, Gonzalez-Lopez JJ, Munoz-Negrete FJ, Oblanca N, Costa-Frossard L, Alvarez-Cermeno JC (2013) Color-code agreement among stratus, cirrus, and spectralis optical coherence tomography in relapsing-remitting multiple sclerosis with and without prior optic neuritis. Am J Ophthalmol 155:890–897. doi:10.1016/j.ajo.2012.11.025

    Article  PubMed  Google Scholar 

  20. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111:1935–1942. doi:10.1016/j.ophtha.2004.03.036

    Article  PubMed  Google Scholar 

  21. Lee EJ, Yang HK, Kim TW, Hwang JM, Kim YH, Kim CY (2015) Comparison of the pattern of retinal ganglion cell damage between patients with compressive and glaucomatous optic neuropathies. Invest Ophthalmol Vis Sci 56:7012–7020. doi:10.1167/iovs.15-17909

    Article  PubMed  Google Scholar 

  22. Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M (2014) The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci 55:4667–4672. doi:10.1167/iovs.14-14766

    Article  PubMed  Google Scholar 

  23. Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye (Lond) 24:1382–1390. doi:10.1038/eye.2010.48

    Article  CAS  Google Scholar 

  24. Moura FC, Medeiros FA, Monteiro ML (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181. doi:10.1016/j.ophtha.2006.06.045

    Article  PubMed  Google Scholar 

  25. Yamashita T, Miki A, Iguchi Y, Kimura K, Maeda F, Kiryu J (2012) Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol 56:502–510. doi:10.1007/s10384-012-0146-3

    Article  PubMed  Google Scholar 

  26. Forte R, Bonavolonta P, Vassallo P (2010) Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica 224:116–121. doi:10.1159/000235925

    Article  PubMed  Google Scholar 

  27. Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885. doi:10.1167/iovs.07-1127

    Article  PubMed  Google Scholar 

  28. Ben Simon GJ, Syed HM, Douglas R, Schwartz R, Goldberg RA, McCann JD (2006) Clinical manifestations and treatment outcome of optic neuropathy in thyroid-related orbitopathy. Ophthalmic Surg Lasers Imaging 37:284–290

    PubMed  Google Scholar 

  29. Kalmann R, Mourits MP (1999) Diabetes mellitus: a risk factor in patients with graves’ orbitopathy. Br J Ophthalmol 83:463–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boboridis KG, Bunce C (2011) Surgical orbital decompression for thyroid eye disease. Cochrane Database Syst Rev. doi:10.1002/14651858.CD007630.pub2

    Google Scholar 

  31. Huna-Baron R, Glovinsky Y, Habot-Wilner Z (2013) Comparison between Hardy-Rand-Rittler 4th edition and Ishihara color plate tests for detection of dyschromatopsia in optic neuropathy. Graefes Arch Clin Exp Ophthalmol 251:585–589. doi:10.1007/s00417-012-2073-x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Duck Kim.

Ethics declarations

Funding

No funding was received for this research.

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Meeting presentations

None.

Additional information

Authors have full control of all primary data and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review the data if requested.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, KA., Kim, YD., In Woo, K. et al. Optical coherence tomography measurements in compressive optic neuropathy associated with dysthyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol 254, 1617–1624 (2016). https://doi.org/10.1007/s00417-016-3335-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3335-9

Keywords

Navigation