Skip to main content
Log in

Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether a conventional, monitor-based multifocal visual evoked potential (mfVEP) system can be used to record steady-state mfVEP (ssmfVEP) in healthy subjects and to study the effects of temporal frequency, electrode configuration and alpha waves.

Methods

Multifocal pattern reversal VEP measurements were performed at 58 dartboard fields using VEP recording equipment. The responses were measured using m-sequences with four pattern reversals per m-step. Temporal frequencies were varied between 6 and 15 Hz. Recordings were obtained from nine normal subjects with a cross-shaped, four-electrode device (two additional channels were derived). Spectral analyses were performed on the responses at all locations. The signal to noise ratio (SNR) was computed for each response using the signal amplitude at the reversal frequency and the noise at the neighbouring frequencies.

Results

Most responses in the ssmfVEP were significantly above noise. The SNR was largest for an 8.6-Hz reversal frequency. The individual alpha electroencephalogram (EEG) did not strongly influence the results. The percentage of the records in which each of the 6 channels had the largest SNR was between 10.0 and 25.2 %.

Conclusion

Our results in normal subjects indicate that reliable mfVEP responses can be achieved by steady-state stimulation using a conventional dartboard stimulator and multi-channel electrode device. The ssmfVEP may be useful for objective visual field assessment as spectrum analysis can be used for automated evaluation of responses. The optimal reversal frequency is 8.6 Hz. Alpha waves have only a minor influence on the analysis. Future studies must include comparisons with conventional mfVEP and psychophysical visual field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90(1):65–81

    Article  PubMed  CAS  Google Scholar 

  2. Klistorner A, Graham SL (2000) Objective perimetry in glaucoma. Ophthalmology 107(12):2283–2299

    Article  PubMed  CAS  Google Scholar 

  3. Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41(6):1580–1587

    PubMed  CAS  Google Scholar 

  4. Hood DC, Odel JG, Zhang X (2000) Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 41(12):4032–4038

  5. Graham SL, Klistorner AI, Goldberg I (2005) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 123(6):729–739

    Article  PubMed  Google Scholar 

  6. Kaltwasser C, Horn FK, Kremers J, Juenemann A, Bergua A (2011) Objective visual field determination in forensic ophthalmology with an optimized 4-channel multifocal VEP perimetry system: a case report of a patient with retinitis pigmentosa. Doc Ophthalmol 123(2):121–125

    Article  PubMed  CAS  Google Scholar 

  7. Alshowaeir D, Yannikas C, Garrick R, Van Der Walt A, Graham SL, Fraser C, Klistorner A (2015) Multifocal VEP assessment of optic neuritis evolution. Clin Neurophysiol 126:1617–1623

    Article  PubMed  Google Scholar 

  8. Horn FK, Kaltwasser C, Junemann AG, Kremers J, Tornow RP (2012) Objective perimetry using a four-channel multifocal VEP system: correlation with conventional perimetry and thickness of the retinal nerve fibre layer. Br J Ophthalmol 96(4):554–559

    Article  PubMed  Google Scholar 

  9. Punjabi OS, Stamper RL, Bostrom AG, Han Y, Lin SC (2008) Topographic comparison of the visual function on multifocal visual evoked potentials with optic nerve structure on Heidelberg retinal tomography. Ophthalmology 115(3):440–446

    Article  PubMed  Google Scholar 

  10. Laron M, Cheng H, Zhang B, Schiffman JS, Tang RA, Frishman LJ (2010) Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler 16(4):412–426

    Article  PubMed  PubMed Central  Google Scholar 

  11. Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39(6):937–950

    PubMed  CAS  Google Scholar 

  12. Hood DC, Zhang X, Hong JE, Chen CS (2002) Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 104(3):303–320

  13. Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22(2):201–251

    Article  PubMed  Google Scholar 

  14. Mousa MF, Cubbidge RP, Al-Mansouri F, Bener A (2013) The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects. Clin Ophthalmol 7:843–858

  15. Lindenberg T, Peters A, Horn FK, Lausen B, Korth M (2004) Diagnostic value of multifocal VEP using cross-validation and noise reduction in glaucoma research. Graefes Arch Clin Exp Ophthalmol 242(5):361–367

    Article  PubMed  Google Scholar 

  16. Zhang X, Hood DC, Chen CS, Hong JE (2002) A signal-to-noise analysis of multifocal VEP responses: an objective definition for poor records. Doc Ophthalmol 104(3):287–302

    Article  PubMed  Google Scholar 

  17. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  18. Burkitt GR, Silberstein RB, Cadusch PJ, Wood AW (2000) Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 111(2):246–258

    Article  PubMed  CAS  Google Scholar 

  19. Bakardjian H, Tanaka T, Cichocki A (2010) Optimization of SSVEP brain responses with application to eight-command brain-computer interface. Neurosci Lett 469(1):34–38

    Article  PubMed  CAS  Google Scholar 

  20. Vialatte FB, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438

    Article  PubMed  Google Scholar 

  21. Mandel C, Luth T, Laue T, Rofer T, Graser A, Krieg-Bruckner B (2009) Navigating a smart wheelchair with a brain–computer interface interpreting steady-state visual evoked potentials. Proc Conf Rec IEEE/RSJ Int Conf Intell Robots Syst, St Louis, MO: 1118–1125

  22. Abdullah SN, Vaegan BMY, Maddess T (2012) Contrast-response functions of the multifocal steady-state VEP (MSV). Clin Neurophysiol 123(9):1865–1871

    Article  PubMed  CAS  Google Scholar 

  23. Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137(3–4):346–353

    Article  PubMed  CAS  Google Scholar 

  24. Kaltwasser C, Horn FK, Kremers J, Juenemann A (2009) A comparison of the suitability of cathode ray tube (CRT) and liquid crystal display (LCD) monitors as visual stimulators in mfERG diagnostics. Doc Ophthalmol 118(3):179–189

    Article  PubMed  Google Scholar 

  25. Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232

    Article  PubMed  CAS  Google Scholar 

  26. Norcia AM, Tyler CW, Hamer RD, Wesemann W (1989) Measurement of spatial contrast sensitivity with the swept contrast VEP. Vis Res 29(5):627–637

    Article  PubMed  CAS  Google Scholar 

  27. Lin FC, Zao JK, Tu KC, Wang Y, Huang YP, Chuang CW, Kuo HY, Chien YY, Chou CC, Jung TP (2012) SNR analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina. Conf Proc IEEE Eng Med Biol Soc 2012:1810–1814

    PubMed  Google Scholar 

  28. Vaegan, Elia MA, Zheng J (2007) Optimising steady-state sweep VEPs to stimuli like the central FDT target: comparison to psychophysical thresholds in early glaucoma detection. In: Marmor M, ed XLV ISCEV international symposium—scientific programme, hotel Taj Krishna, Banjara Hills, Hyderabad, India, August 25–29, 2007 Doc Ophthalmol; 115(suppl):12

  29. Vaegan RAMA, Sanderson GF (2008) Glaucoma affects steady-state VEP contrast thresholds before psychophysics. Optom Vis Sci 85(7):547–558

    Article  PubMed  CAS  Google Scholar 

  30. Birca A, Carmant L, Lortie A, Lassonde M (2006) Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults. Clin Neurophysiol 117(2):279–288

    Article  PubMed  CAS  Google Scholar 

  31. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195

    Article  PubMed  CAS  Google Scholar 

  32. Garn H, Waser M, Lechner M, Dorfer M, Grossegger D (2012) Robust, automatic real-time monitoring of the time course of the individual alpha frequency in the time and frequency domain. Conf Proc IEEE Eng Med Biol Soc 2012:2227–2231

    PubMed  Google Scholar 

  33. Klistorner AI, Graham SL (1999) Multifocal pattern VEP perimetry: analysis of sectoral waveforms. Doc Ophthalmol 98(2):183–196

    Article  PubMed  CAS  Google Scholar 

  34. Fortune B, Hood DC (2003) Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Investig Ophthalmol Vis Sci 44(3):1364–1375

    Article  Google Scholar 

  35. Bradnam MS, Montgomery DM, Evans AL, Keating D, McClure EA, Damato BE, McFadzean R (1996) Objective detection of hemifield and quadrantic field defects by visual evoked cortical potentials. Br J Ophthalmol 80(4):297–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Bach M, Meigen T (1999) Do’s and don’ts in fourier analysis of steady-state potentials. Doc Ophthalmol 99(1):69–82

    Article  PubMed  CAS  Google Scholar 

  37. Chen CS, Hood DC, Zhang X, Karam EZ, Liebmann JM, Ritch R, Thienprasiddhi P, Greenstein VC (2003) Repeat reliability of the multifocal visual evoked potential in normal and glaucomatous eyes. J Glaucoma 12(5):399–408

    Article  PubMed  CAS  Google Scholar 

  38. Fortune B, Demirel S, Zhang X, Hood DC, Johnson CA (2006) Repeatability of normal multifocal VEP: implications for detecting progression. J Glaucoma 15(2):131–141

    Article  PubMed  Google Scholar 

  39. Punjabi OS, Stamper RL, Bostrom AG, Lin SC (2008) Repeatability of the multifocal visual evoked potentials in a clinical glaucoma setting. Can J Ophthalmol 43(4):435–440

    Article  PubMed  Google Scholar 

  40. Perlstein WM, Cole MA, Larson M, Kelly K, Seignourel P, Keil A (2003) Steadystate visual evoked potentials reveal frontally-mediated working memory activity in humans. Neurosci Lett 342:191–195

    Article  PubMed  CAS  Google Scholar 

  41. Gray M, Kemp AH, Silberstein RB, Nathan PJ (2003) Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady-state probe topography (SSPT). Neuroimage 20:975–986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert K. Horn.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

No funding was received for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, F.K., Selle, F., Hohberger, B. et al. Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment. Graefes Arch Clin Exp Ophthalmol 254, 259–268 (2016). https://doi.org/10.1007/s00417-015-3214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3214-9

Keywords

Navigation