Skip to main content

Advertisement

Log in

Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the macular thickness (MT), ganglion cell complex (GCC), and circum-papillary retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) and normal tension glaucoma (NTG) with spectral domain optical coherence tomography (SD-OCT).

Methods

A total of 169 subjects were enrolled: 52 normal subjects, 61 with POAG, and 56 with NTG. Spectral-domain optical coherence tomography (SD-OCT) was used to analyze MT, GCC, and RNFL thickness. To compare the discrimination capabilities between the MT, GCC, and RNFL thickness measurements, we analyzed the areas under the receiver operating characteristic (ROC) curves (AUCs). The relationships between GCC and RNFL measurement and also the relationships of the groups, with age, gender, GCC, and RNFL thickness were assessed.

Results

Normal subjects showed the thickest superior and inferior GCC, followed by in order NTG and POAG (p < 0.05). While there was a statistically difference in MT value of the normal subjects and the glaucoma patients (p < 0.05), MT value did not differ between POAG and NTG (p < 0.05). RNFL thickness parameters were significantly greater in normal subjects, followed in order by the NTG, and POAG (p < 0.05). Between the normal and entire glaucoma groups, all GCC and RNFL parameters showed the similar discrimination power. RNFL thickness parameters correlated significantly with all GCC thickness (p < 0.05). Superior RNFL thickness was the only independent variable between the POAG and NTG patients (odds ratio (OR) 0.942, p = 0.004, 95 %CI 0.905–0.981).

Conclusions

SD-OCT evaluation results suggest higher GCC and RNFL parameters for NTG than POAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gutteridge IF (2000) Normal tension glaucoma: diagnostic features and comparisons with primary open angle glaucoma. Clin Exp Optom 83:161–172

    Article  PubMed  Google Scholar 

  2. Sack J (2000) The management of normal tension glaucoma. Clin Exp Optom 83:185–189

    Article  PubMed  Google Scholar 

  3. Caprioli J, Spaeth GL (1985) Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol 103:1145–1149

    Article  PubMed  CAS  Google Scholar 

  4. Hitchings RA, Anderton SA (1983) A comparative study of visual field defects in low-tension glaucoma and chronic simple glaucoma. Br J Ophthalmol 67:818–821

    Article  PubMed  CAS  Google Scholar 

  5. Kitazawa Y, Shirato S, Yamamoto T (1986) Optic disc haemorrhage in low-tension glaucoma. Ophthalmology 93:853–857

    PubMed  CAS  Google Scholar 

  6. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 105:224–231

    Article  PubMed  CAS  Google Scholar 

  7. Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N (2007) Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 51:197–203

    Article  PubMed  Google Scholar 

  8. Choi MG, Han M, Kim YI, Lee JH (2005) Comparison of glaucomatous parameters in normal, ocular hypertensive and glaucomatous eyes using optical coherence tomography 3000. Korean J Ophthalmol 19:40–46

    Article  PubMed  Google Scholar 

  9. Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46

    Article  PubMed  Google Scholar 

  10. Tan O, Li G, Lu AT, Varma R, Huang D (2008) Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956

    Article  PubMed  Google Scholar 

  11. Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol 151:494–506

    Article  PubMed  Google Scholar 

  12. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400

    Article  PubMed  Google Scholar 

  13. Hodapp E, Parrish RK II, Anderson DR (1993) Clinical decisions in glaucoma. Mosby, St. Louis

    Google Scholar 

  14. Langenegger SJ, Funk J, Töteberg-Harms M (2011) Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 52:3338–3344

    Article  PubMed  Google Scholar 

  15. Savini G, Carbonelli M, Barboni P (2011) Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 22:115–123

    Article  PubMed  Google Scholar 

  16. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452

    Article  PubMed  Google Scholar 

  17. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699

    Article  PubMed  Google Scholar 

  18. Chen J, Huang H, Wang M, Sun X, Qian S (2012) Fourier domain OCT measurement of macular, macular ganglion cell complex, and peripapillary RNFL thickness in glaucomatous Chinese eyes. Eur J Ophthalmol Mar 20 [Epub ahead of print]. doi:10.5301/ejo.5000131

  19. Mok KH, Lee VW, So KF (2004) Retinal nerve fiber loss in high- and normal-tension glaucoma by optical coherence tomography. Optom Vis Sci 81:369–372

    Article  PubMed  Google Scholar 

  20. Konstantakopoulou E, Reeves BC, Fenerty C, Harper RA (2008) Retinal nerve fiber layer measures in high- and normal-tension glaucoma. Optom Vis Sci 85:538–542

    Article  PubMed  Google Scholar 

  21. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    PubMed  CAS  Google Scholar 

  22. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 139:44–55

    Article  PubMed  Google Scholar 

  23. Mori S, Hangai M, Sakamoto A, Yoshimura N (2010) Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma 19:528–534

    Article  PubMed  Google Scholar 

  24. Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY (2011) Comparison of macular ganglion cell complex thickness by fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma June 22 [Epub ahead of print]. doi:10.1097/IJG.0b013e3182254cde

  25. Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, Kim CY (2011) Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 95:1115–1121

    Article  PubMed  Google Scholar 

  26. Kubota T, Khalil AK, Honda M, Ito S, Nishioka Y, Inomata H (1999) Comparative study of retinal nerve fiber layer damage in Japanese patients with normal- and high-tension glaucoma. J Glaucoma 8:363–366

    Article  PubMed  CAS  Google Scholar 

Download references

Financial interest

The authors have no financial interest for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penpe Gul Firat.

Additional information

The ID number for ClinicalTrials.gov is NCT01612416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firat, P.G., Doganay, S., Demirel, E.E. et al. Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 251, 831–838 (2013). https://doi.org/10.1007/s00417-012-2114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2114-5

Keywords

Navigation