Skip to main content

Advertisement

Log in

Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Assessment of the diagnostic ability of segmented macular inner retinal layer thickness and peripapillary retinal nerve fiber layer (pRNFL) measured by spectral-domain optical coherence tomography (SD-OCT) in patients with normal-tension (NT) and high-tension (HT) perimetric and preperimetric glaucoma.

Methods

The 212 participants included 45 healthy subjects, 55 patients with ocular hypertension, 56 patients with preperimetric glaucoma, and 56 patients with perimetric glaucoma. The preperimetric and perimetric groups were further subdivided into NT and HT groups. Sectoral and global thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (mGCL), inner plexiform layer (mIPL), ganglion cell complex (mGCC), and pRNFL were measured using SD-OCT (Spectralis, Heidelberg Engineering, Germany). Diagnostic performance was ascertained by sectoral and global comparison of the sensitivities at specificity ≥ 95%.

Results

For all layers, the largest thickness decrease was reported in the HT perimetric group. In all groups, the sensitivities of mGCL showed a comparable diagnostic value to pRNFL in order to distinguish between healthy subjects and glaucoma patients. In the perimetric group, mGCL (85.7%) exhibited higher sensitivities than mRNFL (78.6%) and mGCC (78.6%). Both mRNFL and pRNFL demonstrated equal diagnostic performance in the HT perimetric group (88.5 and 96.2%), in the NT groups, mRNFL was inferior to all other layers.

Conclusion

The sensitivities of mGCL and mRNFL were comparable to the sensitivities of pRNFL. In clinical application, mGCL and mRNFL, with a focus on the temporal and inferior sectors, may provide a convincing supplementation to pRNFL.

Clinical Trial Registration

Erlangen Glaucoma Registry www.clinicaltrials.gov ID: NCT00494923

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090

    Article  PubMed  Google Scholar 

  2. Kingman S (2004) Glaucoma is second leading cause of blindness globally. Bull World Health Org 82:887–888

    PubMed  PubMed Central  Google Scholar 

  3. Hyman L, Wu SY, Connell AM et al (2001) Prevalence and causes of visual impairment in the Barbados Eye Sudy. Ophthalmology 108:1751–1756

    Article  PubMed  CAS  Google Scholar 

  4. Cho HK, Kee C (2014) Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol 59:434–447

    Article  PubMed  Google Scholar 

  5. Kaas MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  Google Scholar 

  6. Langenegger SJ, Funk J, Töteberg-Harms M (2011) Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 52:3338–3344

    Article  PubMed  Google Scholar 

  7. Wu H, de Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 20:470–476

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bressler SB, Edwards AR, Chalam KV et al (2014) Reproducibility of spectral domain optical coherence tomography retinal thickness measurements and conversion to equivalent time domain metrics in diabetic macular edema. JAMA Ophthalmol 132:113–122

    Google Scholar 

  9. Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zeimer R, Shahidi M, Mori M, Zou S, Asrani S (1996) A new method for rapid mapping of the retinal thickness at posterior pole. Invest Ophthalmol Vis Sci 37:1994–2001

    PubMed  CAS  Google Scholar 

  11. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231

    Article  PubMed  CAS  Google Scholar 

  12. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  PubMed  CAS  Google Scholar 

  13. Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46

    Article  PubMed  Google Scholar 

  14. Giovannini A, Amato G, Mariotti C (2002) The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 236:34–36

    Article  PubMed  CAS  Google Scholar 

  15. Leung CK, Chan WM, Yung WH et al (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400

    Article  PubMed  Google Scholar 

  16. Guedes V, Schuman JS, Hertzmark E et al (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158

    Article  PubMed  Google Scholar 

  18. Kotowski J, Folio LS, Wollstein G et al (2012) Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 96:1420–1425

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699

    Article  PubMed  Google Scholar 

  20. Kim NR, Lee ES, Seong GJ et al (2011) Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 95:1115–1121

    Article  PubMed  Google Scholar 

  21. Garas A, Vargha P, Holló G (2011) Diagnostic accuracy of nerve fiber layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond) 25:57–65

    Article  CAS  Google Scholar 

  22. Tan O, Chopra V, Lu AT et al (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thonginnetra O, Greenstein VC, Chu D, Liebmann JM, Ritch R, Hood DC (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19:151–157

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahrlich KG, De Moraes CG, Teng CC et al (2010) Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. Invest Ophthalmol Vis Sci 51:1458–1463

    Article  PubMed  Google Scholar 

  25. Kiriyama N, Ando A, Fukui C et al (2003) A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension. Graefes Arch Clin Exp Ophthalmol 241:541–545

    Article  PubMed  Google Scholar 

  26. Lewis RA, Hayreh SS, Phelps CD (1983) Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 96:148–152

    Article  PubMed  CAS  Google Scholar 

  27. King D, Drances SM, Douglas G, Schulter M, Wijsman K (1986) Comparison of visual field defects in normal-tension and high-tension glaucoma. Am J Ophthalmol 101:204–207

    Article  PubMed  CAS  Google Scholar 

  28. Wessel JM, Horn FK, Tornow RP et al (2013) Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:3613–3620

    Article  PubMed  Google Scholar 

  29. McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157

    Article  PubMed  CAS  Google Scholar 

  30. Khanal S, Davey PG, Racette L, Madhu T (2016) Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optom 9:118–125

    Article  PubMed  Google Scholar 

  31. Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010

    Article  PubMed  Google Scholar 

  32. Lu AT, Wang M, Varma R et al (2008) Combining nerve fiber layer to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 115:1352–1357

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang C, Tatham AJ, Abe RY et al (2016) Macular ganglion cell inner plexiform layer thickness in glaucomatous eyes with localized retinal nerve fiber layer defects. https://doi.org/10.1371/journal.pone.0160549. Accessed 10 Nov 2017

  34. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    Article  PubMed  Google Scholar 

  35. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21

    Article  PubMed  Google Scholar 

  36. Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805

    Article  PubMed  CAS  Google Scholar 

  37. Kim YJ, Kang MH, Cho HY, Lim HW, Seong M (2014) Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol 58:244–251

    Article  PubMed  CAS  Google Scholar 

  38. Pazos M, Dyrda AA, Biarnés M et al (2017) Diagnostic accuracy of Spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 124:1218–1228

    Article  PubMed  Google Scholar 

  39. Lestak J, Nutterova E, Pitrova S, Krejcova H, Bartosova L, Forgacova V (2012) High Tension Versus Normal Tension Glaucoma. A Comparison of Structural and Functional Examinations. J Clinic Experiment Ophthalmol S5:006. https://doi.org/10.4172/2155-9570.S5-006

    Article  Google Scholar 

  40. Martinez-de-la-Casa JM, Cifuentes-Canorea P, Berrozpe C et al (2014) Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. Invest Ophthalmol Vis Sci 55:8843–8848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Schrems.

Ethics declarations

Financial disclosure

None.

Financial support

The study was supported in part by the German Research Foundation (SFB539) from 1997 to 2009.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

The present work was performed in fulfillment of the requirements for obtaining the degree “Dr. med.” for Florian Edlinger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edlinger, F.S.M., Schrems-Hoesl, L.M., Mardin, C.Y. et al. Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 256, 1245–1256 (2018). https://doi.org/10.1007/s00417-018-3944-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-3944-6

Keywords

Navigation