Skip to main content

Advertisement

Log in

Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Vitamin A, B9, C, E, and uric acid are well-known antioxidants and may prevent age-related eye disorders. The aim of the present study was to investigate the levels of antioxidant vitamins, A, B9, C, E, and antioxidative substance, uric acid in the serum of Japanese patients with normal-tension glaucoma and compare the results with normal controls.

Methods

All subjects with suspicion of primary open-angle glaucoma who came to the glaucoma subspeciality clinic of Keio University Hospital were enrolled in this study. Sixty patients (28 males, 32 females; mean age ± standard deviation: 59.9 ± 9.8 years) with newly diagnosed primary open-angle glaucoma patients were consecutively enrolled in this study. After the diagnosis of primary open-angle glaucoma, the patients underwent 24-h IOP measurements. Forty-seven newly diagnosed consecutive normal-tension glaucoma patients (18 males, 29 females; mean age ± standard deviation: 59.5 ± 10.2 years) were enrolled in this study. The control subjects were recruited from subjects who came to the clinic for annual refractive check-up. The 44 consecutive control subjects of the current study, (16 males, 28 females; 62.7 ± 14.8 years) did not have any ocular diseases. The serum levels of vitamins A, B9, C, E, and uric acid were measured. The values were compared between the normal-tension glaucoma and control groups by the Mann-Whitney U test.

Results

Serum levels of vitamin C were significantly lower in normal-tension glaucoma patients than in normal healthy controls (P = 0.04; normal-tension glaucoma; 4.6 ± 4.0 μg/ml control; 6.3 ± 3.9 μg/ml). Uric acid level was significantly higher in normal-tension glaucoma patients than in controls (P = 0.01; normal-tension glaucoma; 5.8 ± 1.5 mg/dl control; 4.9 ± 1.4 mg/dl). No statistically significant difference was seen in vitamin A (P = 0.41; normal-tension glaucoma; 82.1 ± 26.7 μg/dl control; 77.1 ± 30.1 μg/dl), B9 (P = 0.37; normal-tension glaucoma; 8.7 ± 4.3 ng/ml control; 8.0 ± 3.1 ng/ml)and E (P = 0.83; normal-tension glaucoma; 1.5 ± 0.6 control; 1.5 ± 0.6) levels between normal-tension glaucoma and control groups.

Conclusion

Normal-tension glaucoma patients had lower serum levels of vitamin C and increased levels of uric acid. These observations may pave the way for possible alternative treatment for normal-tension glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, HK M, Shimizu H, Tomita G, Inoue Y, Kitazawa Y (2004) The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology 111:1641–1648

    PubMed  Google Scholar 

  2. Shields MB (2008) Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol 19:85–88

    Article  PubMed  Google Scholar 

  3. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    Article  CAS  PubMed  Google Scholar 

  4. Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123:458–463

    Article  CAS  PubMed  Google Scholar 

  5. Feilchenfeld Z, Yucel YH, Gupta N (2008) Oxidative injury to blood vessels and glia of the pre-laminar optic nerve head in human glaucoma. Exp Eye Res 87:409–414

    Article  CAS  PubMed  Google Scholar 

  6. Sacca SC, Izzotti A, Rossi P, Traverso C (2007) Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84:389–399

    Article  CAS  PubMed  Google Scholar 

  7. Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233

    CAS  PubMed  Google Scholar 

  8. Kumar DM, Agarwal N (2007) Oxidative stress in glaucoma: a burden of evidence. J Glaucoma 16:334–343

    Article  PubMed  Google Scholar 

  9. Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137:62–69

    Article  CAS  PubMed  Google Scholar 

  10. Gherghel D, Griffiths HR, Hilton EJ, Cunliffe IA, Hosking SL (2005) Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 46:877–883

    Article  PubMed  Google Scholar 

  11. Inokuchi Y, Imai S, Nakajima Y, Shimazawa M, Aihara M, Araie M, Hara H (2009) Edaravone, a free radical scavenger, protects against retinal damage in vitro and in vivo. J Pharmacol Exp Ther 329:687–698

    Article  CAS  PubMed  Google Scholar 

  12. Shimazawa M, Nakajima Y, Mashima Y, Hara H (2009) Docosahexaenoic acid (DHA) has neuroprotective effects against oxidative stress in retinal ganglion cells. Brain Res 1251:269–275

    Article  CAS  PubMed  Google Scholar 

  13. Munemasa Y, Ahn JH, Kwong JM, Caprioli J, Piri N (2009) Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma. Gene Ther 16:17–25

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima Y, Inokuchi Y, Nishi M, Shimazawa M, Otsubo K, Hara H (2008) Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res 1226:226–233

    Article  CAS  PubMed  Google Scholar 

  15. Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed  Google Scholar 

  16. Mares JA (2004) High-dose antioxidant supplementation and cataract risk. Nutr Rev 62:28–32

    Article  PubMed  Google Scholar 

  17. Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18:220–223

    Article  PubMed  Google Scholar 

  18. Milton RC, Sperduto RD, Clemons TE, Ferris FL 3rd (2006) Centrum use and progression of age-related cataract in the Age-Related Eye Disease Study: a propensity score approach. AREDS report No. 21. Ophthalmology 113:1264–1270

    Article  PubMed  Google Scholar 

  19. Evans J (2008) Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye 22:751–760

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki S, Suzuki Y, Iwase A, Araie M (2005) Corneal thickness in an ophthalmologically normal Japanese population. Ophthalmology 112:1327–1336

    Article  PubMed  Google Scholar 

  21. Evans JR, Henshaw K (2008) Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev CD000253

  22. Yokoyama T, Date C, Kokubo Y, Yoshiike N, Matsumura Y, Tanaka H (2000) Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata Study. Stroke 31:2287–2294

    CAS  PubMed  Google Scholar 

  23. Varma SD (1991) Scientific basis for medical therapy of cataracts by antioxidants. Am J Clin Nutr 53:335S–345S

    CAS  PubMed  Google Scholar 

  24. Yoshida M, Takashima Y, Inoue M, Iwasaki M, Otani T, Sasaki S, Tsugane S (2007) Prospective study showing that dietary vitamin C reduced the risk of age-related cataracts in a middle-aged Japanese population. Eur J Nutr 46:118–124

    Article  CAS  PubMed  Google Scholar 

  25. Becker B (1957) Chemical composition of human aqueous humor; effects of acetazoleamide. AMA Arch Ophthalmol 57:793–800

    CAS  PubMed  Google Scholar 

  26. KInsey V (1947) Transfer of ascorbic acid and related compounds across the blood-aqueous barrier. Am J Ophthalmol 30:1262–1266

    Google Scholar 

  27. Purcell EF, Lerner LH, Kinsey VE (1954) Ascorbic acid in aqueous humor and serum of patients with and without cataract 51:1–6

    Google Scholar 

  28. Virno M, Bucci MG, Pecori-Giraldi J, Cantore G (1966) Intravenous glycerol-vitamin C (sodium salt) as osmotic agents to reduce intraocular pressure. Am J Ophthalmol 62:824–833

    CAS  PubMed  Google Scholar 

  29. Fishbein SL, Goodstein S (1972) The pressure lowering effect of ascorbic acid. Ann Ophthalmol 4:487–491

    CAS  PubMed  Google Scholar 

  30. Linner E (1969) The pressure lowering effect of ascorbic acid in ocular hypertension. Acta Ophthalmol (Copenh) 47:685–689

    Article  CAS  Google Scholar 

  31. Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M (2004) Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci 45:1232–1239

    Article  PubMed  Google Scholar 

  32. Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M (2008) Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Muller glial cells (TR-MUL). Neurochem Int 52:1351–1357

    Article  CAS  PubMed  Google Scholar 

  33. Portugal CC, Miya VS, Calaza Kda C, Santos RA, Paes-de-Carvalho R (2009) Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells. J Neurochem 108:507–520

    Article  CAS  PubMed  Google Scholar 

  34. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  Google Scholar 

  35. Munemasa Y, Kim SH, Ahn JH, Kwong JM, Caprioli J, Piri N (2008) Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transection and oxidative stress. Invest Ophthalmol Vis Sci 49:3535–3543

    Article  PubMed  Google Scholar 

  36. Kang JH, Pasquale LR, Willett W, Rosner B, Egan KM, Faberowski N, Hankinson SE (2003) Antioxidant intake and primary open-angle glaucoma: a prospective study. Am J Epidemiol 158:337–346

    Article  PubMed  Google Scholar 

  37. Coleman AL, Stone KL, Kodjebacheva G, Yu F, Pedula KL, Ensrud KE, Cauley JA, Hochberg MC, Topouzis F, Badala F, Mangione CM (2008) Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol 145:1081–1089

    Article  PubMed  Google Scholar 

  38. Lee P, Lam KW, Lai M (1977) Aqueous humor ascorbate concentration and open-angle glaucoma. Arch Ophthalmol 95:308–310

    CAS  PubMed  Google Scholar 

  39. Koliakos GG, Konstas AG, Schlotzer-Schrehardt U, Bufidis T, Georgiadis N, Ringvold A (2002) Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. Am J Ophthalmol 134:879–883

    Article  CAS  PubMed  Google Scholar 

  40. Elisaf M, Kitsos G, Bairaktari E, Kalaitzidis R, Kalogeropoulos C, Psilas K (2001) Metabolic abnormalities in patients with primary open-angle glaucoma. Acta Ophthalmol Scand 79:129–132

    Article  CAS  PubMed  Google Scholar 

  41. Jampel HD, Moon JI, Quigley HA, Barron Y, Lam KW (1998) Aqueous humor uric acid and ascorbic acid concentrations and outcome of trabeculectomy. Arch Ophthalmol 116:281–285

    CAS  PubMed  Google Scholar 

  42. Liu KM, Swann D, Lee P, Lam KW (1984) Inhibition of oxidative degradation of hyaluronic acid by uric acid. Curr Eye Res 3:1049–1053

    Article  CAS  PubMed  Google Scholar 

  43. West AL, Oren GA, Moroi SE (2006) Evidence for the use of nutritional supplements and herbal medicines in common eye diseases. Am J Ophthalmol 141:157–166

    Article  PubMed  Google Scholar 

  44. Rhee DJ, Katz LJ, Spaeth GL, Myers JS (2001) Complementary and alternative medicine for glaucoma. Surv Ophthalmol 46:43–55

    Article  CAS  PubMed  Google Scholar 

  45. Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E (2003) Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology 110:359–362

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

none

Financial interest

none

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenya Yuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuki, K., Murat, D., Kimura, I. et al. Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 248, 243–248 (2010). https://doi.org/10.1007/s00417-009-1183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1183-6

Keywords

Navigation