Skip to main content

Advertisement

Log in

Fundus autofluorescence and spectral domain optical coherence tomography in uveitic macular edema

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Cystoid macular edema (CME) is a common vision-limiting complication of uveitis. This study correlated fundus autofluorescence (FAF) and optical coherence tomography (OCT) with visual acuity (VA).

Patients and methods

Prospective, observational, cross-sectional study with 31 patients (53 eyes) with endogenous uveitis and fluorescein angiographically (FA) confirmed CME. Foveal thickness, epiretinal membrane formation, and altered (increased or decreased) foveal FAF were analyzed with a combined spectral domain OCT/FA device (Spectralis™/HRA Heidelberg Retina Angiograph 2). Primary outcome measures were an association between central FAF with foveal thickness and VA (t-test, each). Secondary outcome measures included the association of FAF and epiretinal membrane formation, the presence of cystoid spaces in the outer plexiform and inner nuclear layers, and integrity of the third highly reflective band as detected by OCT (Fisher´s exact test, each).

Results

Of the 24 eyes (59%) with altered FAF in the central 500 µm, all had increased foveal FAF, and 10% also had increased perifoveal petaloid FAF. In eyes with altered FAF, the VA was frequently worse (p = 0.019) and foveal thickness increased (p = 0.015). Foveal thickness (mean 369.4 μm) correlated with VA (p < 0.01). FAF alterations correlated with the presence of cystoid spaces in the outer plexiform and inner nuclear layer in OCT (p < 0.001). Epiretinal membrane formation (70%) was associated with increased foveal thickness (p = 0.003) and poor VA (p = 0.08). Irregularity or loss of the third HRB (51%) correlated with poor VA (p < 0.01) and altered central FAF (p = 0.031).

Conclusions

FAF and OCT are useful diagnostic tools for the evaluation of uveitic CME. Increased central FAF, presence of cystoid retinal changes and disrupted third highly reflective band in OCT, and epiretinal membrane formation are associated with poor vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothova A, Suttorp-van Schulten MS, Frits TW, Kijlstra A (1996) Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 80:332–336

    Article  CAS  PubMed  Google Scholar 

  2. Durrani OM, Tehrani NN, Marr JE, Moradi P, Stavrou P, Murray PI (2004) Degree, duration, and causes of visual loss in uveitis. Br J Ophthalmol 88:1159–1162

    Article  CAS  PubMed  Google Scholar 

  3. Dick AD (1994) The treatment of chronic uveitic macular oedema. Br J Ophthalmol 78:1–2

    Article  CAS  PubMed  Google Scholar 

  4. Freeman G, Matos K, Pavesio CE (2001) Cystoid macular oedema in uveitis: an unsolved problem. Eye 15:12–17

    CAS  PubMed  Google Scholar 

  5. McBain VA, Forrester JV, Lois N (2008) Fundus autofluorescence in the diagnosis of cystoid macular oedema. Br J Ophthalmol 92:946–949

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409

    Article  PubMed  Google Scholar 

  7. Yannuzzi LA, Ober MD, Slakter JS, Spaide RF, Fisher YL, Flower RW, Rosen R (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137:511–524

    Article  PubMed  Google Scholar 

  8. Reinthal EK, Volker M, Freudenthaler N, Grub M, Zierhut M, Schlote T (2004) Optical coherence tomography in the diagnosis and follow-up of patients with uveitic macular edema. Ophthalmologe 101:1181–1188

    Article  CAS  PubMed  Google Scholar 

  9. Markomichelakis NN, Halkiadakis I, Pantelia E, Peponis V, Patelis A, Theodossiadis P, Theodossiadis G (2004) Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology 111:946–953

    Article  PubMed  Google Scholar 

  10. Sivaprasad S, Ikeji F, Xing W, Lightman S (2007) Tomographic assessment of therapeutic response to uveitic macular oedema. Clin Experiment Ophthalmol 35:719–723

    Article  PubMed  Google Scholar 

  11. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113:1019–1029

    CAS  PubMed  Google Scholar 

  12. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG (1998) Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 105:360–370

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Tocino H, Alvarez-Vidal A, Maldonado MJ, Moreno-Montanes J, Garcia-Layana A (2002) Retinal thickness study with optical coherence tomography in patients with diabetes. Invest Ophthalmol Vis Sci 43:1588–1594

    PubMed  Google Scholar 

  14. Antcliff RJ, Stanford MR, Chauhan DS, Graham EM, Spalton DJ, Shilling JS, Fytche TJ, Marshall J (2000) Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology 107:593–599

    Article  CAS  PubMed  Google Scholar 

  15. Gupta V, Gupta P, Singh R, Dogra MR, Gupta A (2008) Spectral-domain cirrus high-definition optical coherence tomography is better than time-domain stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol 145:1018–1022

    Article  PubMed  Google Scholar 

  16. Roesel M, Henschel A, Heinz C, Spital G, Heiligenhaus A (2008) Time-domain and spectral-domain optical coherence tomography in uveitic macular edema. Am J Ophthalmol 146:626–627

    Article  PubMed  Google Scholar 

  17. Holz FG (2001) Autofluorescence imaging of the macula. Ophthalmologe 98:10–18

    Article  CAS  PubMed  Google Scholar 

  18. Bindewald A, Jorzik JJ, Roth F, Holz FG (2005) cSLO digital fundus autofluorescence imaging. Ophthalmologe 102:259–264

    Article  CAS  PubMed  Google Scholar 

  19. Haen SP, Spaide RF (2008) Fundus autofluorescence in multifocal choroiditis and panuveitis. Am J Ophthalmol 145:847–853

    Article  PubMed  Google Scholar 

  20. Lois N, Halfyard AS, Bunce C, Bird AC, Fitzke FW (1999) Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope. Br J Ophthalmol 83:276–279

    Article  CAS  PubMed  Google Scholar 

  21. Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA Jr, Martins MC, Kaiser PK (2004) Optical coherence tomography 3: Automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci 45:2399–2406

    Article  PubMed  Google Scholar 

  22. Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL (2005) The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 46:3349–3354

    Article  PubMed  Google Scholar 

  23. Lardenoye CW, van Kooij B, Rothova A (2006) Impact of macular edema on visual acuity in uveitis. Ophthalmology 113:1446–1449

    Article  PubMed  Google Scholar 

  24. Otani T, Kishi S, Maruyama Y (1999) Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127:688–693

    Article  CAS  PubMed  Google Scholar 

  25. Charbel IP, Helb HM, Holz FG, Scholl HP (2008) Correlation of macular function with retinal thickness in nonproliferative type 2 idiopathic macular telangiectasia. Am J Ophthalmol 145:169–175

    Article  Google Scholar 

  26. Monnet D, Levinson RD, Holland GN, Haddad L, Yu F, Brezin AP (2007) Longitudinal cohort study of patients with birdshot chorioretinopathy. III. Macular imaging at baseline. Am J Ophthalmol 144:818–828

    Article  PubMed  Google Scholar 

  27. Trieschmann M, van Kuijk FJ, Alexander R, Hermans P, Luthert P, Bird AC, Pauleikhoff D (2008) Macular pigment in the human retina: histological evaluation of localization and distribution. Eye 22:132–137

    Article  CAS  PubMed  Google Scholar 

  28. Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP (2005) Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand 83:161–167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Heiligenhaus.

Additional information

Clinical trial registration: The study is registered at http://www.clinicaltrials.gov, registration number NCT00791726.

Disclosure

The authors have no financial interest in any of the reagents used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roesel, M., Henschel, A., Heinz, C. et al. Fundus autofluorescence and spectral domain optical coherence tomography in uveitic macular edema. Graefes Arch Clin Exp Ophthalmol 247, 1685–1689 (2009). https://doi.org/10.1007/s00417-009-1149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1149-8

Keywords

Navigation