Skip to main content

Advertisement

Log in

Apoptotic mechanisms within the retina in Staphylococcus epidermidis experimental endophthalmitis

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Aim

To investigate the potential involvement of apoptosis and its regulators Bcl-2, Bax, and Fas within the retina in Staphylococcus epidermidis experimental endophthalmitis.

Methods

Endophthalmitis was induced in 48 male Lewis rats by unilateral 25-μl intravitreal injection of 7,000 viable organisms of slime-producing S. epidermidis strain ATCC 35983 (experimental group). Forty-eight other Lewis rats received a similar sterile normal saline injection (control group). The injected eyes were graded for clinical inflammation and were removed in groups at 6, 12, 24, 48, 72, and 168 hours post-injection. After surgical separation, retinal tissue specimens were fixed, and paraffin sections underwent hematoxylin-eosin staining, immunohistochemistry against Bcl-2, Bax, and Fas, and TUNEL assay for detection of apoptotic cells. Following morphometric analysis, the apoptotic body index (ABI) was calculated.

Results

While Bcl-2 expression was absent, Bax and Fas expression and apoptosis in ganglion cells, bipolar cells, and photoreceptors, were significantly higher in the experimental group compared to the control group (P < 0.05). In the experimental group, inflammation peaked at 24 hours, Bax and Fas expression at 48 hours and the ABI at 72 hours post-injection.

Conclusion

Apoptosis is increased within the retina in S. epidermidis experimental endophthalmitis through upregulation of Bax and Fas, peaking soon after peak inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bigger JE, Tanigawa M, Zhang M, Atherton SS (2000) Murine cytomegalovirus infection causes apoptosis of uninfected retinal cells. Invest Ophthalmol Vis Sci 41:2248–2254

    PubMed  CAS  Google Scholar 

  2. Bodé DD Jr, Gelender H, Forster RK (1985) A retrospective review of endophthalmitis due to coagulase-negative staphylococci. Br J Ophthalmol 69:915–919. doi:10.1136/bjo.69.12.915

    Article  PubMed  Google Scholar 

  3. Carson D, Ribeiro JM (1993) Apoptosis and disease. Lancet 341:1251–1254. doi:10.1016/0140-6736(93)91154-E

    Article  PubMed  CAS  Google Scholar 

  4. Chan CC, Hikita N, Dastgheib K, Whitcup SM, Gery I, Nussenblatt RB (1994) Experimental melanin-protein-induced uveitis in the Lewis rat. Ophthalmology 101:1275–1280

    PubMed  CAS  Google Scholar 

  5. Chan CC, Matteson DM, Li Q, Whitcup SM, Nussenblatt RB (1997) Apoptosis in patients with posterior uveitis. Arch Ophthalmol 115:1559–1567

    PubMed  CAS  Google Scholar 

  6. Chiou SH, Liu JH, Chen SS, Liu WT, Lin JC, Wong WW, Tseng WS, Chou CK, Liu CY, Ho LL, Hsu WM (2002) Apoptosis of human retina and retinal pigment epithelial cells induced by human cytomegalovirus infection. Ophthalmic Res 34:77–82. doi:10.1159/000048332

    Article  PubMed  CAS  Google Scholar 

  7. Elzey BD, Griffith TS, Herndon JM, Barreiro R, Tschopp J, Ferguson TA (2001) Regulation of Fas ligand-induced apoptosis by TNF. J Immunol 167:3049–3056

    PubMed  CAS  Google Scholar 

  8. Eversole-Cire P, Chen J, Simon MI (2002) Bax is not the heterodimerization partner necessary for sustained anti-photoreceptor-cell-death activity of Bcl-2. Invest Ophthalmol Vis Sci 43:1636–1644

    PubMed  Google Scholar 

  9. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nucleus DNA fragmentation. J Cell Biol 119:493–501. doi:10.1083/jcb.119.3.493

    Article  PubMed  CAS  Google Scholar 

  10. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1158–1159. doi:10.1126/science.270.5239.1189

    Article  Google Scholar 

  11. Han DP, Wisniewski SR, Wilson LA et al (1996) Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol 122:1–17

    PubMed  CAS  Google Scholar 

  12. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. doi:10.1038/35037710

    Article  PubMed  CAS  Google Scholar 

  13. Isenmann S, Engel S, Gillardon F, Bähr M (1999) Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Cell Death Differ 6:673–682. doi:10.1038/sj.cdd.4400538

    Article  PubMed  CAS  Google Scholar 

  14. Maier K, Rau CR, Storch MK, Sättler MB, Demmer I, Weissert R, Taheri N, Kuhnert AV, Bähr M, Diem R (2004) Ciliary neurotrophic factor protects retinal ganglion cells from secondary cell death during acute autoimmune optic neuritis in rats. Brain Pathol 14:378–387

    PubMed  CAS  Google Scholar 

  15. Meredith TA, Trabelsi A, Miller MJ, Miller MJ, Aguilar E, Wilson LA (1990) Spontaneous sterilization in experimental Staphylococcus epidermidis endophthalmitis. Invest Ophthalmol Vis Sci 31:181–186

    PubMed  CAS  Google Scholar 

  16. Nussenblatt RB, Gery I (1996) Experimental autoimmune uveitis and its relationship to clinical ocular inflammatory disease. J Autoimmun 9:575–585. doi:10.1006/jaut.1996.0077

    Article  PubMed  CAS  Google Scholar 

  17. Ormerod LD, Becker LE, Cruise RJ, Grohar HI, Paton BG, Frederick AR Jr, Topping TM, Weiter JJ, Buzney SM, Baker AS (1993) Endophthalmitis caused by the coagulase-negative staphylococci. 2. Factors influencing presentation after cataract surgery. Ophthalmology 100:724–729

    PubMed  CAS  Google Scholar 

  18. Petropoulos IK, Vantzou CV, Lamari FN, Karamanos NK, Anastassiou ED, Pharmakakis NM (2006) Expression of TNF-α, IL-1β, and IFN-γ in Staphylococcus epidermidis slime-positive experimental endophthalmitis is closely related to clinical inflammatory scores. Graefes Arch Clin Exp Ophthalmol 244:1322–1328. doi:10.1007/s00417-006-0261-2

    Article  PubMed  CAS  Google Scholar 

  19. Politi LE, Rotstein NP, Carri NG (2001) Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest Ophthalmol Vis Sci 42:3008–3015

    PubMed  CAS  Google Scholar 

  20. Ravindranath RM, Hasan SA, Mondino BJ (1997) Immunopathologic features of Staphylococcus epidermidis-induced endophthalmitis in the rat. Curr Eye Res 16:1036–1043. doi:10.1076/ceyr.16.10.1036.9015

    Article  PubMed  CAS  Google Scholar 

  21. Salakou S, Tsamandas AC, Bonikos DS, Papapetropoulos T, Dougenis D (2001) The potential role of bcl-2, bax, and Ki67 expression in thymus of patients with myasthenia gravis, and their correlation with clinicopathologic parameters. Eur J Cardiothorac Surg 20:712–721. doi:10.1016/S1010-7940(01)00776-X

    Article  PubMed  CAS  Google Scholar 

  22. Shen DF, Matteson DM, Tuaillon N, Suedekum BK, Buggage RR, Chan CC (2001) Involvement of apoptosis and interferon-gamma in murine toxoplasmosis. Invest Ophthalmol Vis Sci 42:2031–2036

    PubMed  CAS  Google Scholar 

  23. Sueda J, Hikita N, Mochizuki M, Jimi A, Kojiro M (2000) Kinetics of apoptotic cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 41:799–804

    PubMed  CAS  Google Scholar 

  24. The Endophthalmitis Vitrectomy Study Group (1996) Microbiologic factors and visual outcome in the endophthalmitis vitrectomy study. Am J Ophthalmol 122:830–846

    Google Scholar 

  25. Whiston EA, Sugi N, Kamradt MC, Sack C, Heimer SR, Engelbert M, Wawrousek EF, Gilmore MS, Ksander BR, Gregory MS (2008) alphaB-crystallin protects retinal tissue during Staphylococcus aureus-induced endophthalmitis. Infect Immun 76:1781–1790. doi:10.1128/IAI.01285-07

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Cho CH, Atchaneeyasakul LO, McFarland T, Appukuttan B, Stout JT (2005) Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion. Invest Ophthalmol Vis Sci 46:2133–2139. doi:10.1167/iovs.04-1235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos M. Pharmakakis.

Additional information

Support: None

Financial interest: None

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pharmakakis, N.M., Petropoulos, I.K., Georgakopoulos, C.D. et al. Apoptotic mechanisms within the retina in Staphylococcus epidermidis experimental endophthalmitis. Graefes Arch Clin Exp Ophthalmol 247, 667–674 (2009). https://doi.org/10.1007/s00417-008-0996-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0996-z

Keywords

Navigation