Skip to main content

Advertisement

Log in

Inhibitory effects of verapamil isomers on the proliferation of choroidal endothelial cells

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effects of verapamil isomers on in vitro proliferation of bovine choroidal endothelial cells (CECs).

Materials and methods

CECs were isolated from bovine eyes and cultured in endothelial growth medium (EGM). For the proliferation assays, CECs were exposed to verapamil isomers (0.1–100 μM) in EGM with 2% fetal bovine serum or basic fibroblast growth factor (bFGF) (10 ng/ml). After 72 h of incubation with the desired drug, the cellular proliferation was determined by an MTT assay and a BrdU assay. In addition, the drug toxicity on CECs stimulated with EGM was evaluated by cell counting with trypan blue.

Results

All verapamil isomers inhibited the bFGF- or medium-stimulated growth significantly in a concentration range of 10–40 μM without toxicity. No significant differences were seen between the inhibitory effects of the various isomers. Cell toxicity was detected at a concentration of 100 μM verapamil isomers on EGM-stimulated CECs.

Conclusion

The results demonstrate the efficacy of all verapamil isomers in inhibiting CEC proliferation involved in the process of choroidal neovascularization. d-(+)-Verapamil may be recommended for further in vivo evaluation in an animal model of exudative AMD; it has fewer systemic and local side effects because calcium channels are not blocked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alessandro R, Spoonster J, Wersto RP, Kohn EC (1996) Signal transduction as a therapeutic target. Curr Top Microbiol Immunol 213(Pt 3):167–188

    PubMed  CAS  Google Scholar 

  2. Amin R, Puklin JE, Frank RN (1994) Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Investig Ophthalmol Vis Sci 35:3178–3188

    CAS  Google Scholar 

  3. Batra S, Popper LD, Hartley-Asp B (1991) Effect of calcium and calcium antagonists on 45Ca influx and cellular growth of human prostatic tumor cells. Prostate 19:299–311

    Article  PubMed  CAS  Google Scholar 

  4. Blaheta RA, Hailer NP, Brude N, Wittig B, Leckel K, Oppermann E, Bachmann M, Harder S, Cinatl J, Scholz M, Bereiter-Hahn J, Weber S, Encke A, Markus BH (2000) In vitro analysis of verapamil-induced immunosuppression: potent inhibition of T cell motility and lymphocytic transmigration through allogeneic endothelial cells. Transplantation 69:588–597

    Article  PubMed  CAS  Google Scholar 

  5. Cattaneo MG, Gullo M, Vicentini LM (1993) Ca2+ and Ca2+ channel antagonists in the control of human small cell lung carcinoma cell proliferation. Eur J Pharmacol 247:325–331

    Article  PubMed  CAS  Google Scholar 

  6. Catterall WA, Seagar MJ, Takahashi M (1988) Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem 263:3535–3538

    PubMed  CAS  Google Scholar 

  7. Eastman A, Rigas JR (1999) Modulation of apoptosis signaling pathways and cell cycle regulation. Semin Oncol 26:7–16; discussion 41–12

    PubMed  CAS  Google Scholar 

  8. Echizen H, Brecht T, Niedergesass S, Vogelgesang B, Eichelbaum M (1985) The effect of dextro-, levo-, and racemic verapamil on atrioventricular conduction in humans. Am Heart J 109:210–217

    Article  PubMed  CAS  Google Scholar 

  9. Faude F, Enzmann V, Poschmann E, Hoffmann S, Wiedemann P (2000) R-(+)-verapamil, S-(−)-verapamil, and racemic verapamil inhibit human retinal pigment epithelial cell contraction. Graefes Arch Clin Exp Ophthalmol 238:537–541

    Article  PubMed  CAS  Google Scholar 

  10. Fine RL, Koizumi S, Curt GA, Chabner BA (1987) Effect of calcium channel blockers on human CFU-GM with cytotoxic drugs. J Clin Oncol 5:489–495

    PubMed  CAS  Google Scholar 

  11. Frank RN (1997) Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 29:341–353

    PubMed  CAS  Google Scholar 

  12. Freshny R (1992) Animal cell culture: a practical approach. IRL Press, Oxford, England, UK

    Google Scholar 

  13. Frishman W, Kirsten E, Klein M, Pine M, Johnson SM, Hillis LD, Packer M, Kates R (1982) Clinical relevance of verapamil plasma levels in stable angina pectoris. Am J Cardiol 50:1180–1184

    Article  PubMed  CAS  Google Scholar 

  14. Giugliano G, Pasquali D, Notaro A, Brongo S, Nicoletti G, D’Andrea F, Bellastella A, Sinisi AA (2003) Verapamil inhibits interleukin-6 and vascular endothelial growth factor production in primary cultures of keloid fibroblasts. Br J Plast Surg 56:804–809

    Article  PubMed  CAS  Google Scholar 

  15. Glossmann H, Striessnig J (1988) Calcium channels. Vitam Horm 44:155–328

    Article  PubMed  CAS  Google Scholar 

  16. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, Elner VM, Elner SG, Sternberg P Jr (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8:119–126

    PubMed  CAS  Google Scholar 

  17. Hailer NP, Blaheta RA, Harder S, Scholz M, Encke A, Markus BH (1994) In vitro studies on immunosuppression with verapamil. Zentralbl Chir 119:347–354

    PubMed  CAS  Google Scholar 

  18. Hailer NP, Blaheta RA, Harder S, Scholz M, Encke A, Markus BH (1994) Modulation of adhesion molecule expression on endothelial cells by verapamil and other Ca++ channel blockers. Immunobiology 191:38–51

    PubMed  CAS  Google Scholar 

  19. Harris MS, Sakamoto T, Kimura H, He S, Spee C, Gopalakrishna R, Gundimeda U, Yoo JS, Hinton DR, Ryan SJ (1996) Hypericin inhibits cell growth and induces apoptosis in retinal pigment epithelial cells: possible involvement of protein kinase C. Curr Eye Res 15:255–262

    Article  PubMed  CAS  Google Scholar 

  20. Hockwin O, Dragomirescu V, Laser H, Ohrloff C, Kozamanoglu K, Kremer F (1984) Evaluation of the ocular safety of verapamil. Scheimpflug photography with densitometric image analysis of lens transparency in patients with hypertrophic cardiomyopathy subjected to long-term therapy with high doses of verapamil. Ophthalmic Res 16:264–275

    Article  PubMed  CAS  Google Scholar 

  21. Hoffman S, Gopalakrishna R, Gundimeda U, Murata T, Spee C, Ryan SJ, Hinton DR (1998) Verapamil inhibits proliferation, migration and protein kinase C activity in human retinal pigment epithelial cells. Exp Eye Res 67:45–52

    Article  PubMed  CAS  Google Scholar 

  22. Hoffmann S, Spee C, Murata T, Cui JZ, Ryan SJ, Hinton DR (1998) Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads. Graefes Arch Clin Exp Ophthalmol 236:779–784

    Article  PubMed  CAS  Google Scholar 

  23. Husain D, Miller JW, Michaud N, Connolly E, Flotte TJ, Gragoudas ES (1996) Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization. Arch Ophthalmol 114:978–985

    PubMed  CAS  Google Scholar 

  24. Kaumann AJ, Serur JR (1975) Optical isomers of verapamil on canine heart. Prevention of ventricular fibrillation induced by coronary artery occlusion, impaired atrioventricular conductance and negative inotropic and chronotropic effects. Naunyn Schmiedebergs Arch Pharmacol 291:347–358

    Article  PubMed  CAS  Google Scholar 

  25. Killingsworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye 4(Pt 4):613–621

    PubMed  Google Scholar 

  26. Klein BE, Klein R, Linton KL (1992) Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. Ophthalmology 99:546–552

    PubMed  CAS  Google Scholar 

  27. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT (1997) Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 81:154–162

    PubMed  CAS  Google Scholar 

  28. Kountakis SE, Chang CY, Minotti AM, Cabral FR (2000) Effect of verapamil on cholesteatoma migration in vitro. Otolaryngol Head Neck Surg 122:91–95

    Article  PubMed  CAS  Google Scholar 

  29. Lu WL, Dong YL (2003) Endothelial cell proliferation stimulated by basic fibroblast growth factor. Zhongguo Xiufu Chongjian Waike Zazhi 17:386–387

    PubMed  Google Scholar 

  30. Meirelles Pereira LM, Mandarim-de-Lacerda CA (2000) Effect of antihypertensive drugs on the myocardial microvessels in rats with nitric oxide blockade. Pathol Res Pract 196:305–311

    PubMed  CAS  Google Scholar 

  31. Nishimura T, Zhu ZR, Ryan SJ (1990) Effects of sodium iodate on experimental subretinal neovascularization in the primate. Ophthalmologica 200:28–38

    Article  PubMed  CAS  Google Scholar 

  32. Penfold PL, Provis JM, Billson FA (1987) Age-related macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthalmol 225:70–76

    Article  PubMed  CAS  Google Scholar 

  33. Rasmussen H, Barrett PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64:938–984

    PubMed  CAS  Google Scholar 

  34. Richter D, Hatvani I, Toth A (1993) Growth inhibition of intraocular proliferative explants under in vitro conditions by verapamil. Klin Monatsbl Augenheilkd 203:206–211

    PubMed  CAS  Google Scholar 

  35. Spedding M, Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44:363–376

    PubMed  CAS  Google Scholar 

  36. Steinleitner A, Lambert H, Kazensky C, Sanchez I, Sueldo C (1990) Reduction of primary postoperative adhesion formation under calcium channel blockade in the rabbit. J Surg Res 48:42–45

    Article  PubMed  CAS  Google Scholar 

  37. Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther 51:195–216

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi K, Itagaki T, Yamagishi K, Ohkuma H, Uyama M (1990) The role of retinal pigment epithelium in the early stage of development of subretinal neovascularization. Nippon Ganka Gakkai Zasshi 94:3–17

    PubMed  CAS  Google Scholar 

  39. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA (1992) Surgical management of subfoveal choroidal neovascularization. Ophthalmology 99:952–968; discussion 975–956

    PubMed  CAS  Google Scholar 

  40. Uyama M (1991) Choroidal neovascularization: experimental and clinical study. Nippon Ganka Gakkai Zasshi 95:1145–1180

    PubMed  CAS  Google Scholar 

  41. Wagner M, Benson MT, Rennie IG, MacNeil S (1995) Effects of pharmacological modulation of intracellular signalling systems on retinal pigment epithelial cell attachment to extracellular matrix proteins. Curr Eye Res 14:373–384

    Article  PubMed  CAS  Google Scholar 

  42. Walz G, Zanker B, Barth C, Wieder KJ, Clark SC, Strom TB (1990) Transcriptional modulation of human IL-6 gene expression by verapamil. J Immunol 144:4242–4248

    PubMed  CAS  Google Scholar 

  43. Yohem KH, Clothier JL, Montague SL, Geary RJ, Winters AL III, Hendrix MJ, Welch DR (1991) Inhibition of tumor cell invasion by verapamil. Pigment Cell Res 4:225–233

    Article  PubMed  CAS  Google Scholar 

  44. Zeitler H, Ko Y, Glodny B, Totzke G, Appenheimer M, Sachinidis A, Vetter H (1997) Cell-cycle arrest in G0/G1 phase of growth factor-induced endothelial cell proliferation by various calcium channel blockers. Cancer Detect Prev 21:332–339

    PubMed  CAS  Google Scholar 

  45. Zernig G (1990) Widening potential for Ca2+ antagonists: non-L-type Ca2+ channel interaction. Trends Pharmacol Sci 11:38–44

    Article  PubMed  CAS  Google Scholar 

  46. Zhou X (1992) Tetrandrine on monocyte migration induced by endothelial cell-derived chemotactic factor. Zhonghua Yixue Zazhi 72:424–426, 447

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the German Research Association (DFG) (WI 880\9-1) and a junior grant from the University of Leipzig (no. 78311106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, S., Balthasar, S., Friedrichs, U. et al. Inhibitory effects of verapamil isomers on the proliferation of choroidal endothelial cells. Graefe's Arch Clin Exp Ophthalmo 244, 376–381 (2006). https://doi.org/10.1007/s00417-004-1104-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-1104-7

Keywords

Navigation