Skip to main content

Advertisement

Log in

Gene mutations in comorbidity of epilepsy and arrhythmia

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of “cardiocerebral channelopathy” theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of “cardiocerebral channelopathy” and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Keezer MR, Sisodiya SM, Sander JW (2016) Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol 15(1):106–115. https://doi.org/10.1016/s1474-4422(15)00225-2

    Article  PubMed  Google Scholar 

  2. Yuen AWC, Keezer MR, Sander JW (2018) Epilepsy is a neurological and a systemic disorder. Epilepsy Behav 78:57–61. https://doi.org/10.1016/j.yebeh.2017.10.010

    Article  PubMed  Google Scholar 

  3. Costagliola G, Orsini A, Coll M, Brugada R, Parisi P, Striano P (2021) The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention. Ann Clin Transl Neurol 8(7):1557–1568. https://doi.org/10.1002/acn3.51382

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verrier RL, Pang TD, Nearing BD, Schachter SC (2020) The Epileptic Heart: Concept and clinical evidence. Epilepsy Behav 105:106946. https://doi.org/10.1016/j.yebeh.2020.106946

    Article  PubMed  Google Scholar 

  5. Zaccara G, Lattanzi S (2019) Comorbidity between epilepsy and cardiac arrhythmias: Implication for treatment. Epilepsy Behav 97:304–312. https://doi.org/10.1016/j.yebeh.2019.05.038

    Article  PubMed  Google Scholar 

  6. Shmuely S, van der Lende M, Lamberts RJ, Sander JW, Thijs RD (2017) The heart of epilepsy: current views and future concepts. Seizure 44:176–183. https://doi.org/10.1016/j.seizure.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Sivathamboo S, Liu Z, Sutherland F, Minato E, Casillas-Espinosa P, Jones NC, Todaro M, Seneviratne U, Cahill V, Yerra R, French C, Nicolo JP, Perucca P, Kwan P, Sparks P, O’Brien TJ (2022) Serious cardiac arrhythmias detected by subcutaneous long-term cardiac monitors in patients with drug-resistant epilepsy. Neurology 98(19):e1923–e1932. https://doi.org/10.1212/wnl.0000000000200173

    Article  PubMed  Google Scholar 

  8. Serdyuk S, Davtyan K, Burd S, Drapkina O, Boytsov S, Gusev E, Topchyan A (2021) Cardiac arrhythmias and sudden unexpected death in epilepsy: Results of long-term monitoring. Heart Rhythm 18(2):221–228. https://doi.org/10.1016/j.hrthm.2020.09.002

    Article  PubMed  Google Scholar 

  9. Massey CA, Sowers LP, Dlouhy BJ, Richerson GB (2014) Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol 10(5):271–282. https://doi.org/10.1038/nrneurol.2014.64

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ravindran K, Powell KL, Todaro M, O,Brien TJ (2016) The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res 127:19–29. https://doi.org/10.1016/j.eplepsyres.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Isbister JC, Sy RW, Semsarian C (2021) Cardiac arrhythmias in epilepsy: troublemaker, accomplice, or innocent bystander? Heart Rhythm 18(2):229–230. https://doi.org/10.1016/j.hrthm.2020.09.008

    Article  PubMed  Google Scholar 

  12. Thurman DJ, Logroscino G, Beghi E, Hauser WA, Hesdorffer DC, Newton CR, Scorza FA, Sander JW, Tomson T (2017) The burden of premature mortality of epilepsy in high-income countries: a systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia 58(1):17–26. https://doi.org/10.1111/epi.13604

    Article  PubMed  Google Scholar 

  13. Ficker DM, So EL, Shen WK, Annegers JF, O’Brien PC, Cascino GD, Bealau PG (1998) Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 51(5):1270–1274. https://doi.org/10.1212/wnl.51.5.1270

    Article  CAS  PubMed  Google Scholar 

  14. Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G (2016) Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol 15(10):1075–1088. https://doi.org/10.1016/s1474-4422(16)30158-2

    Article  PubMed  Google Scholar 

  15. Li MCH, O’Brien TJ, Todaro M, Powell KL (2019) Acquired cardiac channelopathies in epilepsy: evidence, mechanisms, and clinical significance. Epilepsia 60(9):1753–1767. https://doi.org/10.1111/epi.16301

    Article  CAS  PubMed  Google Scholar 

  16. Verrier RL, Pang TD, Nearing BD, Schachter SC (2021) Epileptic heart: a clinical syndromic approach. Epilepsia 62(8):1780–1789. https://doi.org/10.1111/epi.16966

    Article  PubMed  Google Scholar 

  17. Thijs RD, Ryvlin P, Surges R (2021) Autonomic manifestations of epilepsy: emerging pathways to sudden death? Nat Rev Neurol 17(12):774–788. https://doi.org/10.1038/s41582-021-00574-w

    Article  PubMed  Google Scholar 

  18. Ligthart L, Boomsma DI (2012) Causes of comorbidity: pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Res Hum Genet 15(2):158–165. https://doi.org/10.1375/twin.15.2.158

    Article  PubMed  Google Scholar 

  19. Chahal CAA, Salloum MN, Alahdab F, Gottwald JA, Tester DJ, Anwer LA, So EL, Murad MH, St Louis EK, Ackerman MJ, Somers VK (2020) Systematic review of the genetics of sudden unexpected death in epilepsy: potential overlap with sudden cardiac death and arrhythmia-related genes. J Am Heart Assoc 9(1):e012264. https://doi.org/10.1161/jaha.119.012264

    Article  CAS  PubMed  Google Scholar 

  20. Halvorsen M, Gould L, Wang X, Grant G, Moya R, Rabin R, Ackerman MJ, Tester DJ, Lin PT, Pappas JG, Maurano MT, Goldstein DB, Tsien RW, Devinsky O (2021) De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca(2+) regulation. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2115140118

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ghouse J, Skov MW, Bigseth RS, Ahlberg G, Kanters JK, Olesen MS (2018) Distinguishing pathogenic mutations from background genetic noise in cardiology: the use of large genome databases for genetic interpretation. Clin Genet 93(3):459–466. https://doi.org/10.1111/cge.13066

    Article  CAS  PubMed  Google Scholar 

  22. Djémié T, Weckhuysen S, von Spiczak S, Carvill GL, Jaehn J, Anttonen AK, Brilstra E, Caglayan HS, de Kovel CG, Depienne C, Gaily E, Gennaro E, Giraldez BG, Gormley P, Guerrero-López R, Guerrini R, Hämäläinen E, Hartmann C, Hernandez-Hernandez L, Hjalgrim H, Koeleman BP, Leguern E, Lehesjoki AE, Lemke JR, Leu C, Marini C, McMahon JM, Mei D, Møller RS, Muhle H, Myers CT, Nava C, Serratosa JM, Sisodiya SM, Stephani U, Striano P, van Kempen MJ, Verbeek NE, Usluer S, Zara F, Palotie A, Mefford HC, Scheffer IE, De Jonghe P, Helbig I, Suls A (2016) Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol Genet Genomic Med 4(4):457–464. https://doi.org/10.1002/mgg3.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bagnall RD, Crompton DE, Petrovski S, Lam L, Cutmore C, Garry SI, Sadleir LG, Dibbens LM, Cairns A, Kivity S, Afawi Z, Regan BM, Duflou J, Berkovic SF, Scheffer IE, Semsarian C (2016) Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol 79(4):522–534. https://doi.org/10.1002/ana.24596

    Article  CAS  PubMed  Google Scholar 

  24. Akiyama M, Kobayashi K, Yoshinaga H, Ohtsuka Y (2010) A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia 51(6):1043–1052. https://doi.org/10.1111/j.1528-1167.2009.02466.x

    Article  PubMed  Google Scholar 

  25. Xu X, Zhang Y, Sun H, Liu X, Yang X, Xiong H, Jiang Y, Bao X, Wang S, Yang Z, Wu Y, Qin J, Lin Q, Wu X (2014) Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev 36(8):676–681. https://doi.org/10.1016/j.braindev.2013.10.004

    Article  PubMed  Google Scholar 

  26. Takayama R, Fujiwara T, Shigematsu H, Imai K, Takahashi Y, Yamakawa K, Inoue Y (2014) Long-term course of Dravet syndrome: a study from an epilepsy center in Japan. Epilepsia 55(4):528–538. https://doi.org/10.1111/epi.12532

    Article  CAS  PubMed  Google Scholar 

  27. Fountain-Capal JK, Holland KD, Gilbert DL, Hallinan BE (2011) When should clinicians order genetic testing for Dravet syndrome? Pediatr Neurol 45(5):319–323. https://doi.org/10.1016/j.pediatrneurol.2011.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dravet C (2011) The core Dravet syndrome phenotype. Epilepsia 52(Suppl 2):3–9. https://doi.org/10.1111/j.1528-1167.2011.02994.x

    Article  PubMed  Google Scholar 

  29. Gataullina S, Dulac O (2017) From genotype to phenotype in Dravet disease. Seizure 44:58–64. https://doi.org/10.1016/j.seizure.2016.10.014

    Article  PubMed  Google Scholar 

  30. Marini C, Mei D, Temudo T, Ferrari AR, Buti D, Dravet C, Dias AI, Moreira A, Calado E, Seri S, Neville B, Narbona J, Reid E, Michelucci R, Sicca F, Cross HJ, Guerrini R (2007) Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia 48(9):1678–1685. https://doi.org/10.1111/j.1528-1167.2007.01122.x

    Article  CAS  PubMed  Google Scholar 

  31. Shmuely S, Surges R, Helling RM, Gunning WB, Brilstra EH, Verhoeven JS, Cross JH, Sisodiya SM, Tan HL, Sander JW, Thijs RD (2020) Cardiac arrhythmias in Dravet syndrome: an observational multicenter study. Ann Clin Transl Neurol 7(4):462–473. https://doi.org/10.1002/acn3.51017

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goldenholz DM, Kuhn A, Austermuehle A, Bachler M, Mayer C, Wassertheurer S, Inati SK, Theodore WH (2017) Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia 58(1):77–84. https://doi.org/10.1111/epi.13606

    Article  CAS  PubMed  Google Scholar 

  33. Delogu AB, Spinelli A, Battaglia D, Dravet C, De Nisco A, Saracino A, Romagnoli C, Lanza GA, Crea F (2011) Electrical and autonomic cardiac function in patients with Dravet syndrome. Epilepsia 52(Suppl 2):55–58. https://doi.org/10.1111/j.1528-1167.2011.03003.x

    Article  PubMed  Google Scholar 

  34. Kalume F, Westenbroek RE, Cheah CS, Yu FH, Oakley JC, Scheuer T, Catterall WA (2013) Sudden unexpected death in a mouse model of Dravet syndrome. J Clin Investig 123(4):1798–1808. https://doi.org/10.1172/jci66220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Auerbach DS, Jones J, Clawson BC, Offord J, Lenk GM, Ogiwara I, Yamakawa K, Meisler MH, Parent JM, Isom LL (2013) Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS ONE 8(10):e77843. https://doi.org/10.1371/journal.pone.0077843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frasier CR, Zhang H, Offord J, Dang LT, Auerbach DS, Shi H, Chen C, Goldman AM, Eckhardt LL, Bezzerides VJ, Parent JM, Isom LL (2018) Channelopathy as a SUDEP biomarker in Dravet syndrome patient-derived cardiac myocytes. Stem Cell Rep 11(3):626–634. https://doi.org/10.1016/j.stemcr.2018.07.012

    Article  CAS  Google Scholar 

  37. Lim BC, Hwang H, Kim H, Chae JH, Choi J, Kim KJ, Hwang YS, Yum MS, Ko TS (2015) Epilepsy phenotype associated with a chromosome 2q24.3 deletion involving SCN1A: migrating partial seizures of infancy or atypical Dravet syndrome? Epilepsy Res 109:34–39. https://doi.org/10.1016/j.eplepsyres.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Toth J, Waickman A, Jost J, Seltzer L, Vinocur JM, Auerbach DS (2021) Identification and successful management of near-lethal ventricular tachycardia in 2q24 deletion-associated developmental and epileptic encephalopathy. Seizure 91:146–149. https://doi.org/10.1016/j.seizure.2021.06.003

    Article  PubMed  Google Scholar 

  39. Aronsen JM, Swift F, Sejersted OM (2013) Cardiac sodium transport and excitation-contraction coupling. J Mol Cell Cardiol 61:11–19. https://doi.org/10.1016/j.yjmcc.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  40. Amin AS, Asghari-Roodsari A, Tan HL (2010) Cardiac sodium channelopathies. Pflug Arch 460(2):223–237. https://doi.org/10.1007/s00424-009-0761-0

    Article  CAS  Google Scholar 

  41. Black JA, Waxman SG (2013) Noncanonical roles of voltage-gated sodium channels. Neuron 80(2):280–291. https://doi.org/10.1016/j.neuron.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Ou SW, Zhang ZY, Qiu B, Wang YJ (2018) Molecular expression of multiple Nav1.5 splice variants in the frontal lobe of the human brain. Int J Mol Med 41(2):915–923. https://doi.org/10.3892/ijmm.2017.3286

    Article  CAS  PubMed  Google Scholar 

  43. Johnson JN, Hofman N, Haglund CM, Cascino GD, Wilde AA, Ackerman MJ (2009) Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology 72(3):224–231. https://doi.org/10.1212/01.wnl.0000335760.02995.ca

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aurlien D, Leren TP, Taubøll E, Gjerstad L (2009) New SCN5A mutation in a SUDEP victim with idiopathic epilepsy. Seizure 18(2):158–160. https://doi.org/10.1016/j.seizure.2008.07.008

    Article  PubMed  Google Scholar 

  45. Alabi A, Todd A, Husband A, Reilly J (2016) Safety profile of lamotrigine in overdose. Ther Adv Psychopharmacol 6(6):369–381. https://doi.org/10.1177/2045125316656707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moore PW, Donovan JW, Burkhart KK, Haggerty D (2013) A case series of patients with lamotrigine toxicity at one center from 2003 to 2012. Clin Toxicol (Phila) 51(7):545–549. https://doi.org/10.3109/15563650.2013.818685

    Article  CAS  PubMed  Google Scholar 

  47. French LK, McKeown NJ, Hendrickson RG (2011) Complete heart block and death following lamotrigine overdose. Clin Toxicol (Phila) 49(4):330–333. https://doi.org/10.3109/15563650.2011.572555

    Article  CAS  PubMed  Google Scholar 

  48. Rodrigues R, Amador P, Rassi L, Seixo F, Parreira L, Fonseca N, Soares L (2013) Brugada pattern in a patient medicated with lamotrigine. Rev Port de Cardiol 32(10):807–810. https://doi.org/10.1016/j.repc.2013.01.009

    Article  Google Scholar 

  49. Banfi P, Coll M, Oliva A, Alcalde M, Striano P, Mauri M, Princiotta L, Campuzano O, Versino M, Brugada R (2020) Lamotrigine induced Brugada-pattern in a patient with genetic epilepsy associated with a novel variant in SCN9A. Gene 754:144847. https://doi.org/10.1016/j.gene.2020.144847

    Article  CAS  PubMed  Google Scholar 

  50. Hartmann HA, Colom LV, Sutherland ML, Noebels JL (1999) Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain. Nat Neurosci 2(7):593–595. https://doi.org/10.1038/10147

    Article  CAS  PubMed  Google Scholar 

  51. Parisi P, Oliva A, Coll Vidal M, Partemi S, Campuzano O, Iglesias A, Pisani D, Pascali VL, Paolino MC, Villa MP, Zara F, Tassinari CA, Striano P, Brugada R (2013) Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation. Epilepsy Res 105(3):415–418. https://doi.org/10.1016/j.eplepsyres.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  52. Heron SE, Hernandez M, Edwards C, Edkins E, Jansen FE, Scheffer IE, Berkovic SF, Mulley JC (2010) Neonatal seizures and long QT syndrome: a cardiocerebral channelopathy? Epilepsia 51(2):293–296. https://doi.org/10.1111/j.1528-1167.2009.02317.x

    Article  PubMed  Google Scholar 

  53. González-Pérez A, López-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score. Condel Am J Hum Genet 88(4):440–449. https://doi.org/10.1016/j.ajhg.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  54. Partemi S, Vidal MC, Striano P, Campuzano O, Allegue C, Pezzella M, Elia M, Parisi P, Belcastro V, Casellato S, Giordano L, Mastrangelo M, Pietrafusa N, Striano S, Zara F, Bianchi A, Buti D, La Neve A, Tassinari CA, Oliva A, Brugada R (2015) Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series. Int J Legal Med 129(3):495–504. https://doi.org/10.1007/s00414-014-1063-4

    Article  PubMed  Google Scholar 

  55. Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, Kunic JD, Will ML, Velasco EJ, Bair JJ, Ghidoni A, Cetin I, Van Dyke DL, Wick MJ, Brost B, Delisle BP, Facchinetti F, George AL, Schwartz PJ, Ackerman MJ, Long QT (2013) Syndrome-associated mutations in intrauterine fetal death. JAMA 309(14):1473–1482. https://doi.org/10.1001/jama.2013.3219

    Article  CAS  PubMed  Google Scholar 

  56. Tan BY, Wang L, Uttamchandani M, Barajas-Martinez H, Dumaine R, Morin N, Ching CK, Ho KL, Chong DTT, Chow W, Yap EPH, Moochhala S, Hu D, Yong RYY, Teo WS (2018) A novel three base-pair deletion in domain two of the cardiac sodium channel causes Brugada syndrome. J Electrocardiol 51(4):667–673. https://doi.org/10.1016/j.jelectrocard.2018.03.009

    Article  PubMed  Google Scholar 

  57. Matsusue A, Yuasa I, Umetsu K, Nakayashiki N, Dewa K, Nishimukai H, Kashiwagi M, Hara K, Waters B, Takayama M, Ikematsu N, Kubo S (2016) The global distribution of the p.R1193Q polymorphism in the SCN5A gene. Legal Med (Tokyo, Japan) 19:72–76. https://doi.org/10.1016/j.legalmed.2015.07.010

    Article  CAS  Google Scholar 

  58. Chiu SN, Wu MH, Su MJ, Wang JK, Lin MT, Chang CC, Hsu HW, Shen CT, Thériault O, Chahine M (2012) Coexisting mutations/polymorphisms of the long QT syndrome genes in patients with repaired Tetralogy of Fallot are associated with the risks of life-threatening events. Hum Genet 131(8):1295–1304. https://doi.org/10.1007/s00439-012-1156-4

    Article  CAS  PubMed  Google Scholar 

  59. Soh MS, Bagnall RD, Semsarian C, Scheffer IE, Berkovic SF, Reid CA (2022) Rare sudden unexpected death in epilepsy SCN5A variants cause changes in channel function implicating cardiac arrhythmia as a cause of death. Epilepsia 63(6):e57–e62. https://doi.org/10.1111/epi.17254

    Article  CAS  PubMed  Google Scholar 

  60. Deking S, Liman J (2021) Interactions between the brain and heart. Nervenarzt 92(10):977–985. https://doi.org/10.1007/s00115-021-01170-5

    Article  PubMed  Google Scholar 

  61. O’Brien JE, Meisler MH (2013) Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4:213. https://doi.org/10.3389/fgene.2013.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noujaim SF, Kaur K, Milstein M, Jones JM, Furspan P, Jiang D, Auerbach DS, Herron T, Meisler MH, Jalife J (2012) A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart. FASEB J 26(1):63–72. https://doi.org/10.1096/fj.10-179770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Poulet C, Wettwer E, Grunnet M, Jespersen T, Fabritz L, Matschke K, Knaut M, Ravens U (2015) Late sodium current in human atrial cardiomyocytes from patients in sinus rhythm and atrial fibrillation. PLoS ONE 10(6):e0131432. https://doi.org/10.1371/journal.pone.0131432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mishra S, Reznikov V, Maltsev VA, Undrovinas NA, Sabbah HN, Undrovinas A (2015) Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts. J Physiol 593(6):1409–1427. https://doi.org/10.1113/jphysiol.2014.278259

    Article  CAS  PubMed  Google Scholar 

  65. Westenbroek RE, Bischoff S, Fu Y, Maier SK, Catterall WA, Scheuer T (2013) Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry. J Mol Cell Cardiol 64:69–78. https://doi.org/10.1016/j.yjmcc.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  66. Tomko SR, Mirsa SN, Coorg R, Wilfong A (2015) A case of recurrent asystole associated with seizures responding to sodium channel inhibition in an infant with novel SCN8A mutation. In: Proceedings of the American Epilepsy Society Annual Meeting, p 1–381

  67. Frasier CR, Wagnon JL, Bao YO, McVeigh LG, Lopez-Santiago LF, Meisler MH, Isom LL (2016) Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy. Proc Natl Acad Sci USA 113(45):12838–12843. https://doi.org/10.1073/pnas.1612746113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meisler MH (2019) SCN8A encephalopathy: mechanisms and models. Epilepsia 60(3):S86-s91. https://doi.org/10.1111/epi.14703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, Murphy GG, Parent JM, Meisler MH (2015) Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet 24(2):506–515. https://doi.org/10.1093/hmg/ddu470

    Article  CAS  PubMed  Google Scholar 

  70. Xiao Y, Xiong J, Mao D, Liu L, Li J, Li X, Luo H, Liu L (2018) Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res 139:9–13. https://doi.org/10.1016/j.eplepsyres.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  71. Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S (2022) Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain. https://doi.org/10.1093/brain/awac006

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384(6604):80–83. https://doi.org/10.1038/384080a0

    Article  CAS  PubMed  Google Scholar 

  73. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL (2009) Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med 1(2):6. https://doi.org/10.1126/scitranslmed.3000289

    Article  CAS  Google Scholar 

  74. Soldovieri MV, Miceli F, Taglialatela M (2011) Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda) 26(5):365–376. https://doi.org/10.1152/physiol.00009.2011

    Article  CAS  PubMed  Google Scholar 

  75. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12(1):17–23. https://doi.org/10.1038/ng0196-17

    Article  PubMed  Google Scholar 

  76. Tiron C, Campuzano O, Pérez-Serra A, Mademont I, Coll M, Allegue C, Iglesias A, Partemi S, Striano P, Oliva A, Brugada R (2015) Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 25:65–67. https://doi.org/10.1016/j.seizure.2015.01.003

    Article  PubMed  Google Scholar 

  77. Prüss H, Gessner G, Heinemann SH, Rüschendorf F, Ruppert AK, Schulz H, Sander T, Rimpau W (2019) Linkage evidence for a two-locus inheritance of LQT-associated seizures in a multigenerational LQT family with a novel KCNQ1 Loss-of-function mutation. Front Neurol 10:648. https://doi.org/10.3389/fneur.2019.00648

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E (2018) Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 59(2):358–368. https://doi.org/10.1111/epi.13978

    Article  CAS  PubMed  Google Scholar 

  79. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlen M (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom 13(2):397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  Google Scholar 

  80. Geng Y, Hou X (2020) KCNQ2-neonatal epileptic encephalopathy complicated by ventricular tachycardia: a case report. Front Neurol 11:263. https://doi.org/10.3389/fneur.2020.00263

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yan Y, Wu J, He D, Sun K, Li L (2018) Epilepsies associated with KCNQ2 complicated by supraventricular tachycardia due to a de novo mutation in KCNQ2. Iran J Pediatr 28:e74214. https://doi.org/10.5812/ijp.74214

    Article  Google Scholar 

  82. Grigorov A, Moskalyuk A, Kravchenko M, Veselovsky N, Verkhratsky A, Fedulova S (2014) Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons. Pflug Arch 466(9):1747–1758. https://doi.org/10.1007/s00424-013-1406-x

    Article  CAS  Google Scholar 

  83. Niday Z, Hawkins VE, Soh H, Mulkey DK, Tzingounis AV (2017) Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons. J Neurosci 37(3):576–586. https://doi.org/10.1523/jneurosci.1425-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science (New York) 282(5395):1890–1893. https://doi.org/10.1126/science.282.5395.1890

    Article  CAS  Google Scholar 

  85. Schroeder BC, Kubisch C, Stein V, Jentsch TJ (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396(6712):687–690. https://doi.org/10.1038/25367

    Article  CAS  PubMed  Google Scholar 

  86. Berg T (2016) M-currents (Kv7.2–7.3/KCNQ2-KCNQ3) are responsible for dysfunctional autonomic control in hypertensive rats. Front Physiol 7:584. https://doi.org/10.3389/fphys.2016.00584

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365(6441):75–79. https://doi.org/10.1038/365075a0

    Article  CAS  PubMed  Google Scholar 

  88. Kamb A, Iverson LE, Tanouye MA (1987) Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50(3):405–413. https://doi.org/10.1016/0092-8674(87)90494-6

    Article  CAS  PubMed  Google Scholar 

  89. Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20(4):809–819. https://doi.org/10.1016/s0896-6273(00)81018-1

    Article  CAS  PubMed  Google Scholar 

  90. Glasscock E, Qian J, Yoo JW, Noebels JL (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10(12):1554–1558. https://doi.org/10.1038/nn1999

    Article  CAS  PubMed  Google Scholar 

  91. Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv11 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci 30(15):5167–5175. https://doi.org/10.1523/jneurosci.5591-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bagnall RD, Crompton DE, Semsarian C (2017) Genetic basis of sudden unexpected death in epilepsy. Front Neurol 8:348. https://doi.org/10.3389/fneur.2017.00348

    Article  PubMed  PubMed Central  Google Scholar 

  93. Klassen TL, Bomben VC, Patel A, Drabek J, Chen TT, Gu W, Zhang F, Chapman K, Lupski JR, Noebels JL, Goldman AM (2014) High-resolution molecular genomic autopsy reveals complex sudden unexpected death in epilepsy risk profile. Epilepsia 55(2):e6-12. https://doi.org/10.1111/epi.12489

    Article  CAS  PubMed  Google Scholar 

  94. Moore BM, Jerry Jou C, Tatalovic M, Kaufman ES, Kline DD, Kunze DL (2014) The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia 55(11):1808–1816. https://doi.org/10.1111/epi.12793

    Article  PubMed  Google Scholar 

  95. Simeone KA, Matthews SA, Rho JM, Simeone TA (2016) Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 57(8):e178-182. https://doi.org/10.1111/epi.13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mishra V, Gautier NM, Glasscock E (2018) Simultaneous video-EEG-ECG monitoring to identify neurocardiac dysfunction in mouse models of epilepsy. J Vis Exp. https://doi.org/10.3791/57300

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590(11):2591–2599. https://doi.org/10.1113/jphysiol.2011.224212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Glasscock E, Voigt N, McCauley MD, Sun Q, Li N, Chiang DY, Zhou XB, Molina CE, Thomas D, Schmidt C, Skapura DG, Noebels JL, Dobrev D, Wehrens XH (2015) Expression and function of Kv11 potassium channels in human atria from patients with atrial fibrillation. Basic Res Cardiol 110(5):505. https://doi.org/10.1007/s00395-015-0505-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Si M, Trosclair K, Hamilton KA, Glasscock E (2019) Genetic ablation or pharmacological inhibition of Kv11 potassium channel subunits impairs atrial repolarization in mice. Am J Physiol 316(2):C154-c161. https://doi.org/10.1152/ajpcell.00335.2018

    Article  CAS  Google Scholar 

  100. Trosclair K, Dhaibar HA, Gautier NM, Mishra V, Glasscock E (2020) Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol Dis 137:104759. https://doi.org/10.1016/j.nbd.2020.104759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gong Q, Keeney DR, Robinson JC, Zhou Z (2004) Defective assembly and trafficking of mutant HERG channels with C-terminal truncations in long QT syndrome. J Mol Cell Cardiol 37(6):1225–1233. https://doi.org/10.1016/j.yjmcc.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  102. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS (1997) Tissue and species distribution of mRNA for the IKr-like K+ channel, erg. Circ Res 80(2):261–268. https://doi.org/10.1161/01.res.80.2.261

    Article  CAS  PubMed  Google Scholar 

  103. Tu E, Bagnall RD, Duflou J, Semsarian C (2011) Post-mortem review and genetic analysis of sudden unexpected death in epilepsy (SUDEP) cases. Brain Pathol (Zurich, Switzerland) 21(2):201–208. https://doi.org/10.1111/j.1750-3639.2010.00438.x

    Article  CAS  Google Scholar 

  104. Auerbach DS, McNitt S, Gross RA, Zareba W, Dirksen RT, Moss AJ (2016) Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology 87(16):1660–1668. https://doi.org/10.1212/wnl.0000000000003056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zarroli K, Querfurth H (2018) New onset seizures in a patient with Long QT Syndrome (LQTS2) and a pathogenic carboxyl-terminus frameshift variant of the KCNH2 gene. J Clin Neurosci 53:253–255. https://doi.org/10.1016/j.jocn.2018.04.040

    Article  CAS  PubMed  Google Scholar 

  106. Omichi C, Momose Y, Kitahara S (2010) Congenital long QT syndrome presenting with a history of epilepsy: misdiagnosis or relationship between channelopathies of the heart and brain? Epilepsia 51(2):289–292. https://doi.org/10.1111/j.1528-1167.2009.02267.x

    Article  PubMed  Google Scholar 

  107. Anderson JH, Bos JM, Meyer FB, Cascino GD, Ackerman MJ (2012) Concealed long QT syndrome and intractable partial epilepsy: a case report. Mayo Clinic Proc 87(11):1128–1131. https://doi.org/10.1016/j.mayocp.2012.07.019

    Article  Google Scholar 

  108. Khositseth A, Tester DJ, Will ML, Bell CM, Ackerman MJ (2004) Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm 1(1):60–64. https://doi.org/10.1016/j.hrthm.2004.01.006

    Article  PubMed  Google Scholar 

  109. Zamorano-León JJ, Yañez R, Jaime G, Rodriguez-Sierra P, Calatrava-Ledrado L, Alvarez-Granada RR, Mateos-Cáceres PJ, Macaya C, López-Farré AJ (2012) KCNH2 gene mutation: a potential link between epilepsy and long QT-2 syndrome. J Neurogenet 26(3–4):382–386. https://doi.org/10.3109/01677063.2012.674993

    Article  CAS  PubMed  Google Scholar 

  110. Li G, Shi R, Wu J, Han W, Zhang A, Cheng G, Xue X, Sun C (2016) Association of the hERG mutation with long-QT syndrome type 2, syncope and epilepsy. Mol Med Rep 13(3):2467–2475. https://doi.org/10.3892/mmr.2016.4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sanchez-Conde FG, Jimenez-Vazquez EN, Auerbach DS, Jones DK (2022) The ERG1 K(+) channel and its role in neuronal health and disease. Front Mol Neurosci 15:890368. https://doi.org/10.3389/fnmol.2022.890368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Raab-Graham KF, Radeke CM, Vandenberg CA (1994) Molecular cloning and expression of a human heart inward rectifier potassium channel. NeuroReport 5(18):2501–2505. https://doi.org/10.1097/00001756-199412000-00024

    Article  CAS  PubMed  Google Scholar 

  113. Youn JH, McDonough AA (2009) Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 71:381–401. https://doi.org/10.1146/annurev.physiol.010908.163241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ambrosini E, Sicca F, Brignone MS, D’Adamo MC, Napolitano C, Servettini I, Moro F, Ruan Y, Guglielmi L, Pieroni S, Servillo G, Lanciotti A, Valvo G, Catacuzzeno L, Franciolini F, Molinari P, Marchese M, Grottesi A, Guerrini R, Santorelli FM, Priori S, Pessia M (2014) Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype. Hum Mol Genet 23(18):4875–4886. https://doi.org/10.1093/hmg/ddu201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y (2005) A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332(4):1012–1019. https://doi.org/10.1016/j.bbrc.2005.05.054

    Article  CAS  PubMed  Google Scholar 

  116. Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Ozdemir C, Griggs RC (1994) Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol 35(3):326–330. https://doi.org/10.1002/ana.410350313

    Article  CAS  PubMed  Google Scholar 

  117. Haruna Y, Kobori A, Makiyama T, Yoshida H, Akao M, Doi T, Tsuji K, Ono S, Nishio Y, Shimizu W, Inoue T, Murakami T, Tsuboi N, Yamanouchi H, Ushinohama H, Nakamura Y, Yoshinaga M, Horigome H, Aizawa Y, Kita T, Horie M (2007) Genotype-phenotype correlations of KCNJ2 mutations in Japanese patients with Andersen-Tawil syndrome. Hum Mutat 28(2):208. https://doi.org/10.1002/humu.9483

    Article  PubMed  Google Scholar 

  118. Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J (2009) Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 587(Pt 17):4213–4233. https://doi.org/10.1113/jphysiol.2009.170746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reilly L, Eckhardt LL (2021) Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 18(8):1423–1434. https://doi.org/10.1016/j.hrthm.2021.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  120. Serôdio P, Rudy B (1998) Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol 79(2):1081–1091. https://doi.org/10.1152/jn.1998.79.2.1081

    Article  PubMed  Google Scholar 

  121. Nakajima T, Kawabata-Iwakawa R, Kaneko Y, Hamano SI, Sano R, Tamura S, Hasegawa H, Kobari T, Kominato Y, Nishiyama M, Kurabayshi M (2020) Novel cardiocerebral channelopathy associated with a KCND3 V392I mutation. Int Heart J 61(5):1049–1055. https://doi.org/10.1536/ihj.20-203

    Article  PubMed  Google Scholar 

  122. Wang J, Wen Y, Zhang Q, Yu S, Chen Y, Wu X, Zhang Y, Bao X (2019) Gene mutational analysis in a cohort of Chinese children with unexplained epilepsy: Identification of a new KCND3 phenotype and novel genes causing Dravet syndrome. Seizure 66:26–30. https://doi.org/10.1016/j.seizure.2019.01.025

    Article  PubMed  Google Scholar 

  123. Giudicessi JR, Ye D, Kritzberger CJ, Nesterenko VV, Tester DJ, Antzelevitch C, Ackerman MJ (2012) Novel mutations in the KCND3-encoded Kv43 K+ channel associated with autopsy-negative sudden unexplained death. Hum Mutat 33(6):989–997. https://doi.org/10.1002/humu.22058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takayama K, Ohno S, Ding WG, Ashihara T, Fukumoto D, Wada Y, Makiyama T, Kise H, Hoshiai M, Matsuura H, Horie MA (2019) A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm 16(11):1698–1706. https://doi.org/10.1016/j.hrthm.2019.05.033

    Article  PubMed  Google Scholar 

  125. Delpón E, Cordeiro JM, Núñez L, Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Hofman-Bang J, Burashnikov E, Christiansen M, Antzelevitch C (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1(3):209–218. https://doi.org/10.1161/circep.107.748103

    Article  PubMed  PubMed Central  Google Scholar 

  126. Choubey M, Bansal R, Siddharthan D, Naik N, Sharma G, Saxena A (2022) Early repolarization syndrome, epilepsy, and atrial fibrillation in a young girl with novel KCND3 mutation managed with quinidine. J Cardiovasc Electrophysiol 33(6):1312–1315. https://doi.org/10.1111/jce.15489

    Article  PubMed  Google Scholar 

  127. Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28(8):422–428. https://doi.org/10.1016/j.tins.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  128. de Los Angeles Tejada M, Stolpe K, Meinild AK, Klaerke DA (2012) Clofilium inhibits slick and slack potassium channels. Biologics 6:465–470. https://doi.org/10.2147/btt.S33827

    Article  Google Scholar 

  129. Juang JM, Lu TP, Lai LC, Ho CC, Liu YB, Tsai CT, Lin LY, Yu CC, Chen WJ, Chiang FT, Yeh SF, Lai LP, Chuang EY, Lin JL (2014) Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep 4:6733. https://doi.org/10.1038/srep06733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Møller RS, Heron SE, Larsen LH, Lim CX, Ricos MG, Bayly MA, van Kempen MJ, Klinkenberg S, Andrews I, Kelley K, Ronen GM, Callen D, McMahon JM, Yendle SC, Carvill GL, Mefford HC, Nabbout R, Poduri A, Striano P, Baglietto MG, Zara F, Smith NJ, Pridmore C, Gardella E, Nikanorova M, Dahl HA, Gellert P, Scheffer IE, Gunning B, Kragh-Olsen B, Dibbens LM (2015) Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 56(9):e114-120. https://doi.org/10.1111/epi.13071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kohli U, Ravishankar C, Nordli D (2020) Cardiac phenotypic spectrum of KCNT1 mutations. Cardiol Young 30(12):1935–1939. https://doi.org/10.1017/s1047951120002735

    Article  PubMed  Google Scholar 

  132. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, Petrou S (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 75(4):581–590. https://doi.org/10.1002/ana.24128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 17(3):338–340. https://doi.org/10.1038/ng1197-338

    Article  CAS  PubMed  Google Scholar 

  134. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384(6604):78–80. https://doi.org/10.1038/384078a0

    Article  CAS  PubMed  Google Scholar 

  135. Moss AJ, Kass RS, Long QT (2005) Syndrome: from channels to cardiac arrhythmias. J Clin Investig 115(8):2018–2024. https://doi.org/10.1172/jci25537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pusch M, Magrassi R, Wollnik B, Conti F (1998) Activation and inactivation of homomeric KvLQT1 potassium channels. Biophys J 75(2):785–792. https://doi.org/10.1016/s0006-3495(98)77568-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nishio Y, Makiyama T, Itoh H, Sakaguchi T, Ohno S, Gong YZ, Yamamoto S, Ozawa T, Ding WG, Toyoda F, Kawamura M, Akao M, Matsuura H, Kimura T, Kita T, Horie M (2009) D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol 54(9):812–819. https://doi.org/10.1016/j.jacc.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  138. Hata Y, Yoshida K, Kinoshita K, Nishida N (2017) Epilepsy-related sudden unexpected death: targeted molecular analysis of inherited heart disease genes using next-generation DNA sequencing. Brain Pathol (Zurich, Switzerland) 27(3):292–304. https://doi.org/10.1111/bpa.12390

    Article  CAS  Google Scholar 

  139. Shorvon S, Tomson T (2011) Sudden unexpected death in epilepsy. Lancet (London, England) 378(9808):2028–2038. https://doi.org/10.1016/s0140-6736(11)60176-1

    Article  PubMed  Google Scholar 

  140. Lieve KV, Williams L, Daly A, Richard G, Bale S, Macaya D, Chung WK (2013) Results of genetic testing in 855 consecutive unrelated patients referred for long QT syndrome in a clinical laboratory. Genet Test Mol Biomarkers 17(7):553–561. https://doi.org/10.1089/gtmb.2012.0118

    Article  CAS  PubMed  Google Scholar 

  141. Yoshikane Y, Yoshinaga M, Hamamoto K, Hirose S (2013) A case of long QT syndrome with triple gene abnormalities: digenic mutations in KCNH2 and SCN5A and gene variant in KCNE1. Heart Rhythm 10(4):600–603. https://doi.org/10.1016/j.hrthm.2012.12.008

    Article  PubMed  Google Scholar 

  142. D’Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M (2013) K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 7:134. https://doi.org/10.3389/fncel.2013.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Giudicessi JR, Ackerman MJ (2012) Potassium-channel mutations and cardiac arrhythmias–diagnosis and therapy. Nat Rev Cardiol 9(6):319–332. https://doi.org/10.1038/nrcardio.2012.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nikitin ES, Vinogradova LV (2021) Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 25(3):223–235. https://doi.org/10.1080/14728222.2021.1908263

    Article  CAS  PubMed  Google Scholar 

  145. Roberts R, Brugada R (2003) Genetics and arrhythmias. Annu Rev Med 54:257–267. https://doi.org/10.1146/annurev.med.54.073002.182112

    Article  CAS  PubMed  Google Scholar 

  146. Mori F, Okada M, Tomiyama M, Kaneko S, Wakabayashi K (2005) Effects of ryanodine receptor activation on neurotransmitter release and neuronal cell death following kainic acid-induced status epilepticus. Epilepsy Res 65(1–2):59–70. https://doi.org/10.1016/j.eplepsyres.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  147. Wleklinski MJ, Kannankeril PJ, Knollmann BC (2020) Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J Physiol 598(14):2817–2834. https://doi.org/10.1113/jp276757

    Article  CAS  PubMed  Google Scholar 

  148. Roston TM, Wei J, Guo W, Li Y, Zhong X, Wang R, Estillore JP, Peltenburg PJ, Noguer FRI, Till J, Eckhardt LL, Orland KM, Hamilton R, LaPage MJ, Krahn AD, Tadros R, Vinocur JM, Kallas D, Franciosi S, Roberts JD, Wilde AAM, Jensen HK, Sanatani S, Chen SRW (2022) Clinical and functional characterization of ryanodine receptor 2 variants implicated in calcium-release deficiency syndrome. JAMA Cardiol 7(1):84–92. https://doi.org/10.1001/jamacardio.2021.4458

    Article  PubMed  Google Scholar 

  149. Yano M, Yamamoto T, Kobayashi S, Matsuzaki M (2009) Role of ryanodine receptor as a Ca2(+) regulatory center in normal and failing hearts. J Cardiol 53(1):1–7. https://doi.org/10.1016/j.jjcc.2008.10.008

    Article  PubMed  Google Scholar 

  150. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Investig 118(6):2230–2245. https://doi.org/10.1172/jci35346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D’Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113(7):829–840. https://doi.org/10.1016/s0092-8674(03)00434-3

    Article  CAS  PubMed  Google Scholar 

  152. Johnson JN, Tester DJ, Bass NE, Ackerman MJ (2010) Cardiac channel molecular autopsy for sudden unexpected death in epilepsy. J Child Neurol 25(7):916–921. https://doi.org/10.1177/0883073809343722

    Article  PubMed  Google Scholar 

  153. Aiba I, Wehrens XH, Noebels JL (2016) Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc Natl Acad Sci USA 113(33):E4895-4903. https://doi.org/10.1073/pnas.1605216113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yap SM, Smyth S (2019) Ryanodine receptor 2 (RYR2) mutation: a potentially novel neurocardiac calcium channelopathy manifesting as primary generalised epilepsy. Seizure 67:11–14. https://doi.org/10.1016/j.seizure.2019.02.017

    Article  PubMed  Google Scholar 

  155. Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM, Vaksmann G, Dubosq-Bidot L, Sebillon P, Mannens MM, Guicheney P, Wilde AA (2005) Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet 42(11):863–870. https://doi.org/10.1136/jmg.2004.028993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rivolta I, Binda A, Masi A, DiFrancesco JC (2020) Cardiac and neuronal HCN channelopathies. Pflugers Arch 472(7):931–951. https://doi.org/10.1007/s00424-020-02384-3

    Article  CAS  PubMed  Google Scholar 

  157. Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80(3):304–310. https://doi.org/10.1212/WNL.0b013e31827dec42

    Article  PubMed  Google Scholar 

  158. Sartiani L, Mannaioni G, Masi A, Novella RM, Cerbai E (2017) The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev 69(4):354–395. https://doi.org/10.1124/pr.117.014035

    Article  CAS  PubMed  Google Scholar 

  159. DiFrancesco D (2015) HCN4 sinus bradycardia and atrial fibrillation. Arrhythm Electrophysiol Rev 4(1):9–13. https://doi.org/10.15420/aer.2015.4.1.9

    Article  PubMed  PubMed Central  Google Scholar 

  160. DiFrancesco JC, Castellotti B, Milanesi R, Ragona F, Freri E, Canafoglia L, Franceschetti S, Ferrarese C, Magri S, Taroni F, Costa C, Labate A, Gambardella A, Solazzi R, Binda A, Rivolta I, Di Gennaro G, Casciato S, D’Incerti L, Barbuti A, DiFrancesco D, Granata T, Gellera C (2019) HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 153:49–58. https://doi.org/10.1016/j.eplepsyres.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  161. Li M, Maljevic S, Phillips AM, Petrovski S, Hildebrand MS, Burgess R, Mount T, Zara F, Striano P, Schubert J, Thiele H, Nürnberg P, Wong M, Weisenberg JL, Thio LL, Lerche H, Scheffer IE, Berkovic SF, Petrou S, Reid CA (2018) Gain-of-function HCN2 variants in genetic epilepsy. Hum Mutat 39(2):202–209. https://doi.org/10.1002/humu.23357

    Article  CAS  PubMed  Google Scholar 

  162. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22(2):216–224. https://doi.org/10.1093/emboj/cdg032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Campostrini G, DiFrancesco JC, Castellotti B, Milanesi R, Gnecchi-Ruscone T, Bonzanni M, Bucchi A, Baruscotti M, Ferrarese C, Franceschetti S, Canafoglia L, Ragona F, Freri E, Labate A, Gambardella A, Costa C, Gellera C, Granata T, Barbuti A, DiFrancesco D (2018) A loss-of-function hcn4 mutation associated with familial benign myoclonic epilepsy in infancy causes increased neuronal excitability. Front Mol Neurosci 11:269. https://doi.org/10.3389/fnmol.2018.00269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, Martinez AF, Rosenfeld JA, Machol K, Yang Y, Liu P, Walkiewicz M, Beuten J, Gomez-Ospina N, Haude K, Fong CT, Enns GM, Bernstein JA, Fan J, Gotway G, Ghorbani M, van Gassen K, Monroe GR, van Haaften G, Basel-Vanagaite L, Yang XJ, Campeau PM, Muenke M (2016) De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet 99(4):934–941. https://doi.org/10.1016/j.ajhg.2016.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu XR, Ye TT, Zhang WJ, Guo X, Wang J, Huang SP, Xie LS, Song XW, Deng WW, Li BM, He N, Wu QY, Zhuang MZ, Xu M, Shi YW, Su T, Yi YH, Liao WP (2021) CHD4 variants are associated with childhood idiopathic epilepsy with sinus arrhythmia. CNS Neurosci Ther 27(10):1146–1156. https://doi.org/10.1111/cns.13692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, Novelli V, Kim C, Tirasawadichai T, Judge DP, Rothenberg E, Chen HS, Napolitano C, Priori SG, Delmar M (2014) Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129(10):1092–1103. https://doi.org/10.1161/circulationaha.113.003077

    Article  CAS  PubMed  Google Scholar 

  167. Cerrone M, Delmar M (2014) Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med 24(5):184–190. https://doi.org/10.1016/j.tcm.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gigli L, Bertero G, Vidal MC, Iglesias A, Campuzano O, Striano P, Oliva A, Brugada R (2017) Juvenile myoclonic epilepsy and Brugada type 1 ECG pattern associated with (a novel) plakophillin 2 mutation. J Neurol 264(4):792–795. https://doi.org/10.1007/s00415-017-8414-2

    Article  PubMed  Google Scholar 

  169. Coll M, Allegue C, Partemi S, Mates J, Del Olmo B, Campuzano O, Pascali V, Iglesias A, Striano P, Oliva A, Brugada R (2016) Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing. Int J Legal Med 130(2):331–339. https://doi.org/10.1007/s00414-015-1269-0

    Article  PubMed  Google Scholar 

  170. Novelli V, Malkani K, Cerrone M (2018) Pleiotropic phenotypes associated with PKP2 variants. Front Cardiovasc Med 5:184. https://doi.org/10.3389/fcvm.2018.00184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. https://doi.org/10.1038/nature05453

    Article  CAS  PubMed  Google Scholar 

  172. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science (New York) 347(6220):1419. https://doi.org/10.1126/science.1260419

    Article  CAS  Google Scholar 

  173. Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchetchik D, Kelley K, Vega A, Matthews G, Rossi P, Ornitz DM, D’Angelo E (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55(3):449–463. https://doi.org/10.1016/j.neuron.2007.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Venkatesan K, Liu Y, Goldfarb M (2014) Fast-onset long-term open-state block of sodium channels by A-type FHFs mediates classical spike accommodation in hippocampal pyramidal neurons. J Neurosci 34(48):16126–16139. https://doi.org/10.1523/jneurosci.1271-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang C, Wang C, Hoch EG (2011) Pitt GS, Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage-gated sodium channels. J Biol Chem 286(27):24253–24263. https://doi.org/10.1074/jbc.M111.245803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Siekierska A, Isrie M, Liu Y, Scheldeman C, Vanthillo N, Lagae L, de Witte PA, Van Esch H, Goldfarb M, Buyse GM (2016) Gain-of-function FHF1 mutation causes early-onset epileptic encephalopathy with cerebellar atrophy. Neurology 86(23):2162–2170. https://doi.org/10.1212/wnl.0000000000002752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M (2021) Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 62(7):1546–1558. https://doi.org/10.1111/epi.16916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lodder EM, De Nittis P, Koopman CD, Wiszniewski W (2016) GNB5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am J Hum Genet 99(3):704–710. https://doi.org/10.1016/j.ajhg.2016.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Poke G, King C, Muir A, de Valles-Ibáñez G, Germano M, Moura de Souza CF, Fung J, Chung B, Fung CW, Mignot C, Ilea A, Keren B, Vermersch AI, Davis S, Stanley T, Moharir M, Kannu P, Shao Z, Malerba N, Merla G, Mefford HC, Scheffer IE, Sadleir LG (2019) The epileptology of GNB5 encephalopathy. Epilepsia 60(11):e121–e127. https://doi.org/10.1111/epi.16372

    Article  CAS  PubMed  Google Scholar 

  180. Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F, Lombès A, Eymard B, Duboc D, Laforêt P (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74(8):674–677. https://doi.org/10.1212/WNL.0b013e3181d0ccf4

    Article  CAS  PubMed  Google Scholar 

  181. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H (1995) Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 91(4):955–961. https://doi.org/10.1161/01.cir.91.4.955

    Article  CAS  PubMed  Google Scholar 

  182. Hirano M, Pavlakis SG (1994) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol 9(1):4–13. https://doi.org/10.1177/088307389400900102

    Article  CAS  PubMed  Google Scholar 

  183. Finsterer J, Zarrouk-Mahjoub S (2020) The heart in m.3243A>G carriers. Herz 45(4):356–361. https://doi.org/10.1007/s00059-018-4739-6

    Article  CAS  PubMed  Google Scholar 

  184. Malfatti E, Laforêt P, Jardel C, Stojkovic T, Behin A, Eymard B, Lombès A, Benmalek A, Bécane HM, Berber N, Meune C, Duboc D, Wahbi K (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 80(1):100–105. https://doi.org/10.1212/WNL.0b013e31827b1a2f

    Article  CAS  PubMed  Google Scholar 

  185. Lee MH, Sung YJ, Yoon JH, Kim J, Oh IY, Choi EK, Oh S (2011) Wolff-Parkinson-white syndrome in a patient with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome. Korean Circ J 41(11):674–676. https://doi.org/10.4070/kcj.2011.41.11.674

    Article  PubMed  PubMed Central  Google Scholar 

  186. Tahsili-Fahadan P, Geocadin RG (2017) Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ Res 120(3):559–572. https://doi.org/10.1161/circresaha.116.308446

    Article  CAS  PubMed  Google Scholar 

  187. Taggart P, Critchley H, Lambiase PD (2011) Heart-brain interactions in cardiac arrhythmia. Heart (British Cardiac Society) 97(9):698–708. https://doi.org/10.1136/hrt.2010.209304

    Article  CAS  PubMed  Google Scholar 

  188. Coote JH, Chauhan RA (2016) The sympathetic innervation of the heart: important new insights. Auton Neurosci 199:17–23. https://doi.org/10.1016/j.autneu.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  189. Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Høgenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JM, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T (2013) Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol 12(10):966–977. https://doi.org/10.1016/s1474-4422(13)70214-x

    Article  PubMed  Google Scholar 

  190. Chahal CAA, Tester DJ, Fayyaz AU, Jaliparthy K, Khan NA, Lu D, Khan M, Sahoo A, Rajendran A, Knight JA, Simpson MA, Behr ER, So EL, St Louis EK, Reichard RR, Edwards WD, Ackerman MJ, Somers VK (2021) Confirmation of cause of death via comprehensive autopsy and whole exome molecular sequencing in people with epilepsy and sudden unexpected death. J Am Heart Assoc 10(23):e021170. https://doi.org/10.1161/jaha.121.021170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bateman LM, Li CS, Seyal M (2008) Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131(Pt 12):3239–3245. https://doi.org/10.1093/brain/awn277

    Article  PubMed  PubMed Central  Google Scholar 

  192. MacCormick JM, McAlister H, Crawford J, French JK, Crozier I, Shelling AN, Eddy CA, Rees MI, Skinner JR (2009) Misdiagnosis of long QT syndrome as epilepsy at first presentation. Ann Emerg Med 54(1):26–32. https://doi.org/10.1016/j.annemergmed.2009.01.031

    Article  PubMed  Google Scholar 

  193. Galtrey CM, Levee V, Arevalo J, Wren D, Long QT (2019) Syndrome masquerading as epilepsy. Pract Neurol 19(1):56–61. https://doi.org/10.1136/practneurol-2018-001959

    Article  PubMed  Google Scholar 

  194. Kang H, Lan L, Jia Y, Li C, Fang Y, Zhu S, Kirsch H, Long QT (2021) Syndrome with potassium voltage-gated channel subfamily H member 2 gene mutation mimicking refractory epilepsy: case report. BMC Neurol 21(1):338. https://doi.org/10.1186/s12883-021-02365-8

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pacia SV, Devinsky O, Luciano DJ, Vazquez B (1994) The prolonged QT syndrome presenting as epilepsy: a report of two cases and literature review. Neurology 44(8):1408–1410. https://doi.org/10.1212/wnl.44.8.1408

    Article  CAS  PubMed  Google Scholar 

  196. Khouzam SN, Khouzam RN, Long QT (2009) Syndrome misdiagnosed and mistreated as a seizure disorder for eight years. Can J Cardiol 25(3):166. https://doi.org/10.1016/s0828-282x(09)70052-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Medford BA, Bos JM, Ackerman MJ (2014) Epilepsy misdiagnosed as long QT syndrome: it can go both ways. Congenit Heart Dis 9(4):E135-139. https://doi.org/10.1111/chd.12104

    Article  PubMed  Google Scholar 

  198. Taggart NW, Haglund CM, Tester DJ (2007) Ackerman MJ, Diagnostic miscues in congenital long-QT syndrome. Circulation 115(20):2613–2620. https://doi.org/10.1161/circulationaha.106.661082

    Article  PubMed  Google Scholar 

  199. Odom N, Bateman LM (2018) Sudden unexpected death in epilepsy, periictal physiology, and the SUDEP-7 Inventory. Epilepsia 59(10):e157–e160. https://doi.org/10.1111/epi.14552

    Article  PubMed  PubMed Central  Google Scholar 

  200. Coll M, Striano P, Ferrer-Costa C, Campuzano O, Matés J, Del Olmo B, Iglesias A, Pérez-Serra A, Mademont I, Picó F, Oliva A, Brugada R (2017) Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP. PLoS ONE 12(12):e0189618. https://doi.org/10.1371/journal.pone.0189618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thanked researchers whose studies were enrolled in our review.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Cheng Yu and Xue-jun Deng searched the references and participated in drafting the manuscript. Da Xu designed research plans, provided research direction, supervised the work and modified the final manuscript.

Corresponding author

Correspondence to Da Xu.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Deng, Xj. & Xu, D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 270, 1229–1248 (2023). https://doi.org/10.1007/s00415-022-11430-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11430-2

Keywords

Navigation