Skip to main content

Advertisement

Log in

Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sudden unexpected death in epilepsy (SUDEP) is defined as the abrupt, no traumatic, witnessed or unwitnessed death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus (seizure duration ≥30 min or seizures without recovery), and in which postmortem examination does not reveal a cause of death. Although the physiopathological mechanisms that underlie SUDEP remain to be clarified, the genetic background has been described to play a role in this disorder. Pathogenic variants in genes associated with epilepsy and encoding cardiac ion channels could explain the SUDEP phenotype. To test this we use the next-generation sequencing technology to sequence a cohort of SUDEP cases and its translation into clinical and forensic fields. A panel target resequencing was used to study 14 SUDEP cases from both postmortem (2 cases) and from living patients (12 cases). Genes already associated with SUDEP and also candidate genes had been investigated. Overall, 24 rare genetic variants were identified in 13 SUDEP cases. Four cases showed rare variants with complete segregation in the SCN1A, FBN1, HCN1, SCN4A, and EFHC1 genes, and one case with a rare variant in KCNQ1 gene showed incomplete pattern of inheritance. In four cases, rare variants were detected in CACNA1A, SCN11A and SCN10A, and KCNQ1 genes, but familial segregation was not possible due to lack of DNA from relatives. Finally, in the four remaining cases, the rare variants did not segregate in the family. This study confirms the link between epilepsy, sudden death, and cardiac disease. In addition, we identified new potential candidate genes for SUDEP: FBN1, HCN1, SCN4A, EFHC1, CACNA1A, SCN11A, and SCN10A. Further confirmation in larger cohorts will be necessary especially if genetic screening for SUDEP is applied to forensic and clinical medicine. Nevertheless, this study supports the emerging concept of a genetically determined cardiocerebral channelopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nashef L, So EL, Ryvlin P, Tomson T (2012) Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53(2):227–233. doi:10.1111/j.1528-1167.2011.03358.x

    Article  PubMed  Google Scholar 

  2. Tolstykh GP, Cavazos JE (2013) Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav: E&B 26(3):410–414. doi:10.1016/j.yebeh.2012.09.017

    Article  Google Scholar 

  3. Terra VC (2012) Sudden unexpected death in epilepsy: from the lab to the clinic setting. Epilsepy Behav 26(3):415–20

    Article  Google Scholar 

  4. Shorvon S, Tomson T (2011) Sudden unexpected death in epilepsy. Lancet 378(9808):2028–2038. doi:10.1016/S0140-6736(11)60176-1

    Article  PubMed  Google Scholar 

  5. Tu E, Bagnall RD, Duflou J, Semsarian C (2011) Post-mortem review and genetic analysis of sudden unexpected death in epilepsy (SUDEP) cases. Brain Pathol 21(2):201–208. doi:10.1111/j.1750-3639.2010.00438.x

    Article  CAS  PubMed  Google Scholar 

  6. Glasscock E (2013) Genomic biomarkers of SUDEP in brain and heart. Epilepsy Behav: E&B. doi:10.1016/j.yebeh.2013.09.019

    Google Scholar 

  7. Partemi S, Vidal MC, Striano P, Campuzano O, Allegue C, Pezzella M, Elia M, Parisi P, Belcastro V, Casellato S, Giordano L, Mastrangelo M, Pietrafusa N, Striano S, Zara F, Bianchi A, Buti D, La Neve A, Tassinari CA, Oliva A, Brugada R (2015) Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series. Int J Legal Med 129(3):495–504. doi:10.1007/s00414-014-1063-4

    Article  PubMed  Google Scholar 

  8. Wall DP, Pivovarov R, Tong M, Jung JY, Fusaro VA, DeLuca TF, Tonellato PJ (2010) Genotator: a disease-agnostic tool for genetic annotation of disease. BMC Med Genet 3:50. doi:10.1186/1755-8794-3-50

    Google Scholar 

  9. Belinky F, Nativ N, Stelzer G, Zimmerman S, Iny Stein T, Safran M, Lancet D (2015) PathCards: multi-source consolidation of human biological pathways. Database: J Biol Database Curation. doi:10.1093/database/bav006

    Google Scholar 

  10. Marco-Sola S, Sammeth M, Guigo R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9(12):1185–1188. doi:10.1038/nmeth.2221

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  12. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. doi:10.1101/gr.107524.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA. http://evs.gs.washington.edu/EVS/. Accessed Sept 2014

  14. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632

    Article  PubMed  Google Scholar 

  15. Exome aggregation consortium (ExAC) C, MA. http://exac.broadinstitute.org. Accessed April 2015

  16. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577–581. doi:10.1002/humu.10212

    Article  CAS  PubMed  Google Scholar 

  17. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics/editorial board, Jonathan L Haines et al. Chapter 7: Unit 7 20. doi:10.1002/0471142905.hg0720s76

  18. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7(10), e46688. doi:10.1371/journal.pone.0046688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. doi:10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  20. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med: Off J Am Coll Med Genet 17(5):405–424. doi:10.1038/gim.2015.30

    Article  Google Scholar 

  21. Campuzano O, Allegue C, Fernández A, Iglesias A, Brugada R (2015) Determining the pathogenicity of genetic variants associated with cardiac channelopathies. Sci Rep. doi:10.1038/srep07953

    PubMed Central  PubMed  Google Scholar 

  22. Parisi P, Oliva A, Coll Vidal M, Partemi S, Campuzano O, Iglesias A, Pisani D, Pascali VL, Paolino MC, Villa MP, Zara F, Tassinari CA, Striano P, Brugada R (2013) Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation. Epilepsy Res 105(3):415–418. doi:10.1016/j.eplepsyres.2013.02.024

  23. de Llano CT, Campuzano O, Perez-Serra A, Mademont I, Coll M, Allegue C, Iglesias A, Partemi S, Striano P, Oliva A, Brugada R (2015) Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure: J Br Epilepsy Assoc 25:65–67. doi:10.1016/j.seizure.2015.01.003

    Article  Google Scholar 

  24. Buoni S, Zannolli R, Macucci F, Ansaldi S, Grasso M, Arbustini E, Fois A (2004) The FBN1 (R2726W) mutation is not fully penetrant. Ann Hum Genet 68(Pt 6):633–638. doi:10.1046/j.1529-8817.2004.00113.x

    Article  CAS  PubMed  Google Scholar 

  25. DiFrancesco JC, DiFrancesco D (2015) Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 6:174. doi:10.3389/fncel.2015.00071

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, Nabbout R, Cances C, Ville D, Brilstra EH, Gobbi G, Raffo E, Bouteiller D, Marie Y, Trouillard O, Robbiano A, Keren B, Agher D, Roze E, Lesage S, Nicolas A, Brice A, Baulac M, Vogt C, El Hajj N, Schneider E, Suls A, Weckhuysen S, Gormley P, Lehesjoki AE, De Jonghe P, Helbig I, Baulac S, Zara F, Koeleman BP, Haaf T, LeGuern E, Depienne C (2014) De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 46(6):640–645. doi:10.1038/ng.2952

    Article  CAS  PubMed  Google Scholar 

  27. Cao L, Li X, Hong D (2015) Normokalemic periodic paralysis with involuntary movements and generalized epilepsy associated with two novel mutations in SCN4A gene. Seizure: J Br Epilepsy Assoc 24:134–136. doi:10.1016/j.seizure.2014.08.005

    Article  Google Scholar 

  28. Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, Ganesh S, Sugimoto Y, Inazawa J, Bailey JN, Ochoa A, Jara-Prado A, Rasmussen A, Ramos-Peek J, Cordova S, Rubio-Donnadieu F, Inoue Y, Osawa M, Kaneko S, Oguni H, Mori Y, Yamakawa K (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36(8):842–849. doi:10.1038/ng1393

    Article  CAS  PubMed  Google Scholar 

  29. Yamazaki S, Ikeno K, Abe T, Tohyama J, Adachi Y (2011) Hemiconvulsion-hemiplegia-epilepsy syndrome associated with CACNA1A S218L mutation. Pediatr Neurol 45(3):193–196. doi:10.1016/j.pediatrneurol.2011.04.010

    Article  PubMed  Google Scholar 

  30. Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, Merkies IS, Waxman SG (2014) Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain: J Neurol 137(Pt 6):1627–1642. doi:10.1093/brain/awu079

    Article  Google Scholar 

  31. Verkerk AO, Remme CA, Schumacher CA, Scicluna BP, Wolswinkel R, de Jonge B, Bezzina CR, Veldkamp MW (2012) Functional Nav1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ Res 111(3):333–343. doi:10.1161/CIRCRESAHA.112.274035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by “Fundació La Caixa.” We also thank the Genetic Commission of the Italian League Against Epilepsy for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Oliva or Ramon Brugada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Antonio Oliva and Ramon Brugada are co-senior authors.

Contributors

Carlo Minetti MD, PhD, Pediatric Neurology and Neuromuscular Diseases Unit, Department of Neurosciences; Institute G. Gaslini, University of Genova, Genoa, Italy

Susanna Casellato, Department of Child Neuropsychiatry, University of Sassari, Sassari, Italy

Federico Zara PhD, Laboratory of Neurogenetics, Department of Neurosciences; Institute G. Gaslini, Genoa, Italy

Amedeo Bianchi, MD, Department of Neurology and Epilepsy Centre, San Donato Hospital, Arezzo, Italy

Angela La Neve, Titti Francavilla, MD, Department of Neurological and Psychiatric Sciences, Section of 1st Neurologic Clinic, University of Bari, Bari, Italy

Carlo Alberto Tassinari MD, Department of Neurological Sciences, University of Bologna, Bologna, Italy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, M., Allegue, C., Partemi, S. et al. Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing. Int J Legal Med 130, 331–339 (2016). https://doi.org/10.1007/s00414-015-1269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1269-0

Keywords

Navigation