Skip to main content

Advertisement

Log in

The MRZ reaction and a quantitative intrathecal IgG synthesis may be helpful to differentiate between primary central nervous system lymphoma and multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Some patients with primary central nervous system lymphoma (PCNSL) may initially present with similar clinical, magnetic resonance imaging, and routine cerebrospinal fluid (CSF) findings as those observed in multiple sclerosis (MS). The MRZ reaction (MRZR), composed of the three respective antibody indices (AIs) against measles, rubella, and varicella zoster virus, appears to be the most specific CSF marker for MS. This study aimed to determine whether a positive MRZR and other routine CSF markers help differentiate between MS and PCNSL. Data regarding brain biopsy, CSF routine tests, cytopathological examination and immunophenotyping of CSF cells were assessed in 68 PCNSL patients. MRZR was determined, as possible, in PCNSL patients (n = 37) and in those with MS (n = 74; age and sex matched to PSCNL patients) and psychiatric disorders (PD; n = 78). Two stringency levels for a positive antibody index (AI) evaluation (AI ≥ 1.5 and 2.0) were applied, and MRZR was considered positive in cases with ≥ 2 positive AIs (MRZR-2). Using the common AI threshold of ≥ 1.5, MS patients exhibited positive MRZR-2 (58.1%) more frequently than PCNSL (8.1%) and PD patients (2.6%; p < 0.0001 for each comparison with the MS group) corresponding to a positive predictive value (PPV) of 89.6% and a negative predictive value (NPV) of 78.0%. On applying the stricter AI threshold of ≥ 2.0, 37.8% of MS patients were MRZR-2 positive; however, all patients with PCNSL and PD were MRZR-2 negative (p < 0.0001 for each comparison with the MS cohort) resulting in a PPV of 100% and an NPV of 71.4%. Consequently, a positive MRZR-2 result may contribute toward the distinction between MS and PCNSL owing to its high specificity and PPV for MS in the context of the present study. Among the other CSF parameters only a quantitative intrathecal IgG synthesis (present in 49.3% of MS patients but in none of the PCNSL or PD patients; p < 0.0001 for each comparison with the MS group) reliably indicated MS rather than PCNSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AI:

Antibody index

AIs:

Antibody indices

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

ECOG PS:

Eastern Cooperative Oncology Group Performance Status

Ig:

Immunoglobulin

IgG/M/A:

Immunoglobulin G/M/A

LDH:

Lactate dehydrogenase

LP:

Lumbar puncture

MRI:

Magnetic resonance imaging

MRZR:

Measles virus, rubella virus, and varicella zoster virus reaction

MS:

Multiple sclerosis

NPV:

Negative predictive value

OCB:

Oligoclonal bands

PCNSL:

Primary central nervous system lymphoma

PD:

Psychiatric disorders

PPMS:

Primary progressive MS

PPV:

Positive predictive value

QAlb:

Albumin quotient

RRMS:

Relapsing–remitting MS

SD:

Standard deviation

References

  1. Grommes C, DeAngelis LM (2017) Primary CNS lymphoma. J Clin Oncol JCO2017727602. https://doi.org/10.1200/jco.2017.72.7602

  2. Ostrom QT, Gittleman H, Xu J et al (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neurooncology 18(suppl_5):v1–v75. https://doi.org/10.1093/neuonc/now207

    Google Scholar 

  3. Bataille B, Delwail V, Menet E et al (2000) Primary intracerebral malignant lymphoma: report of 248 cases. J Neurosurg 92(2):261–266. https://doi.org/10.3171/jns.2000.92.2.0261

    Article  CAS  PubMed  Google Scholar 

  4. Schabet M, Herrlinger U, Weller M et al (1997) Neue Entwicklungen in Diagnostik und Therapie primärer non-Hodgkin-Lymphome des zentralen Nervensystems (New developments in diagnosis and therapy of primary non-Hodgkin’s lymphoma of the central nervous system). Nervenarzt 68(4):298–308

    Article  CAS  PubMed  Google Scholar 

  5. Grimm SA, Pulido JS, Jahnke K et al (2007) Primary intraocular lymphoma: an international primary central nervous system lymphoma collaborative group report. Ann Oncol 18(11):1851–1855. https://doi.org/10.1093/annonc/mdm340

    Article  CAS  PubMed  Google Scholar 

  6. Hottenrott T, Dersch R, Berger B et al (2017) The MRZ reaction in primary progressive multiple sclerosis. Fluids Barriers CNS 14(1):2. https://doi.org/10.1186/s12987-016-0049-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fischer L, Martus P, Weller M et al (2008) Meningeal dissemination in primary CNS lymphoma: prospective evaluation of 282 patients. Neurology 71(14):1102–1108. https://doi.org/10.1212/01.wnl.0000326958.52546.f5

    Article  CAS  PubMed  Google Scholar 

  8. Korfel A, Weller M, Martus P et al (2012) Prognostic impact of meningeal dissemination in primary CNS lymphoma (PCNSL): experience from the G-PCNSL-SG1 trial. Ann Oncol 23(9):2374–2380. https://doi.org/10.1093/annonc/mdr627

    Article  CAS  PubMed  Google Scholar 

  9. Abrey LE, Batchelor TT, Ferreri AJM et al (2005) Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol 23(22):5034–5043. https://doi.org/10.1200/jco.2005.13.524

    Article  PubMed  Google Scholar 

  10. Felgenhauer K, Reiber H (1992) The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Investig 70(1):28–37

    Article  CAS  PubMed  Google Scholar 

  11. Jarius S, Eichhorn P, Franciotta D et al (2017) The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol 264(3):453–466. https://doi.org/10.1007/s00415-016-8360-4

    Article  CAS  PubMed  Google Scholar 

  12. Wurster U, Stachan R, Windhagen A et al (2006) Reference values for standard cerebrospinal fluid examinations in multiple sclerosis. Results from 99 healthy volunteers. Mult Scler 12:P248

    Google Scholar 

  13. Jarius S, Franciotta D, Bergamaschi R et al (2008) Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 79(10):1134–1136. https://doi.org/10.1136/jnnp.2007.133330

    Article  CAS  PubMed  Google Scholar 

  14. Jarius S, Eichhorn P, Jacobi C et al (2009) The intrathecal, polyspecific antiviral immune response: specific for MS or a general marker of CNS autoimmunity? J Neurol Sci 280(1–2):98–100. https://doi.org/10.1016/j.jns.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  15. Hottenrott T, Dersch R, Berger B et al (2015) The intrathecal, polyspecific antiviral immune response in neurosarcoidosis, acute disseminated encephalomyelitis and autoimmune encephalitis compared to multiple sclerosis in a tertiary hospital cohort. Fluids Barriers CNS 12:27. https://doi.org/10.1186/s12987-015-0024-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bednárová J, Stourac P, Adam P (2005) Relevance of immunological variables in neuroborreliosis and multiple sclerosis. Acta Neurol Scand 112(2):97–102. https://doi.org/10.1111/j.1600-0404.2005.00418.x

    Article  PubMed  Google Scholar 

  17. Puccioni-Sohler M, Kitze B, Felgenhauer K et al (1995) The value of CSF analysis for the differential diagnosis of HTLV-I associated myelopathy and multiple sclerosis. Arq Neuropsiquiatr 53(4):760–765

    Article  CAS  PubMed  Google Scholar 

  18. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. https://doi.org/10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaller CP, Loosli SV, Rahm B et al (2014) Working memory in schizophrenia: behavioral and neural evidence for reduced susceptibility to item-specific proactive interference. Biol Psychiatry 76(6):486–494. https://doi.org/10.1016/j.biopsych.2014.03.012

    Article  PubMed  Google Scholar 

  20. Endres D, Huzly D, Dersch R, Stich O, Berger B, Schuchardt F, Perlov E, Venhoff N, Hellwig S, Fiebich BL, Erny D, Hottenrott T, Tebartz van Elst L (2017) Do patients with schizophreniform and bipolar disorders show an intrathecal, polyspecific, antiviral immune response? A pilot study. Fluids Barriers CNS 14(1):34. https://doi.org/10.1186/s12987-017-0082-1

  21. Reiber H (1998) Cerebrospinal fluid-physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler 4(3):99–107. https://doi.org/10.1177/135245859800400302

    CAS  PubMed  Google Scholar 

  22. Reiber H, Ungefehr S, Jacobi C (1998) The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 4(3):111–117. https://doi.org/10.1177/135245859800400304

    Article  CAS  PubMed  Google Scholar 

  23. Derfuss T, Hohlfeld R, Meinl E (2001) Multiple sclerosis. Chlamydia hypothesis in debate (Multiple Sklerose. Chlamydien-Hypothese in der Diskussion). Nervenarzt 72(10):820–823

    Article  CAS  PubMed  Google Scholar 

  24. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122(2):189–203

    Article  CAS  PubMed  Google Scholar 

  25. Graef IT, Henze T, Reiber H (1994) Polyspezifische Immunreaktion im ZNS bei Autoimmunerkrankungen mit ZNS-Beteiligung (Polyspecific immune reaction in the central nervous system in autoimmune diseases with CNS involvement). Z Arztl Fortbild (Jena) 88(7–8):587–591

    CAS  Google Scholar 

  26. Reiber H (2016) Cerebrospinal fluid data compilation and knowledge-based interpretation of bacterial, viral, parasitic, oncological, chronic inflammatory and demyelinating diseases. Diagnostic patterns not to be missed in neurology and psychiatry. Arq Neuropsiquiatr 74(4):337–350. https://doi.org/10.1590/0004-282x20160044

    Article  PubMed  Google Scholar 

  27. Rosche B, Laurent S, Conradi S et al (2012) Measles IgG antibody index correlates with T2 lesion load on MRI in patients with early multiple sclerosis. PLoS One 7(1):e28094. https://doi.org/10.1371/journal.pone.0028094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kułakowska A, Mroczko B, Mantur M et al (2012) Multiplexing analysis of the polyspecific intrathecal immune response in multiple sclerosis. Methods 56(4):528–531. https://doi.org/10.1016/j.ymeth.2012.03.002

    Article  PubMed  Google Scholar 

  29. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184(2):101–122

    Article  CAS  PubMed  Google Scholar 

  30. Liebsch R, Kornhuber ME, Dietl D et al (1996) Blood-CSF barrier integrity in multiple sclerosis. Acta Neurol Scand 94(6):404–410

    Article  CAS  PubMed  Google Scholar 

  31. Baraniskin A, Kuhnhenn J, Schlegel U et al (2011) Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117(11):3140–3146. https://doi.org/10.1182/blood-2010-09-308684

    Article  CAS  PubMed  Google Scholar 

  32. Ohe Y, Hayashi T, Mishima K et al (2013) Central nervous system lymphoma initially diagnosed as tumefactive multiple sclerosis after brain biopsy. Intern Med 52(4):483–488

    Article  PubMed  Google Scholar 

  33. Kuroda Y, Kawasaki T, Haraoka S et al (1992) Autopsy report of primary CNS B-cell lymphoma indistinguishable from multiple sclerosis: diagnosis with the immunoglobulin gene rearrangements analysis. J Neurol Sci 111(2):173–179

    Article  CAS  PubMed  Google Scholar 

  34. Chayasirisobhon S, Kumar V, Ali I et al (1987) Primary lymphoma of the central nervous system: a diagnostic problem. J Natl Med Assoc 79(2):198–200

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bessell EM, Dickinson P, Dickinson S et al (2011) Increasing age at diagnosis and worsening renal function in patients with primary central nervous system lymphoma. J Neurooncol 104(1):191–193. https://doi.org/10.1007/s11060-010-0457-5

    Article  PubMed  Google Scholar 

  36. Reiber H, Teut M, Pohl D et al (2009) Paediatric and adult multiple sclerosis: age-related differences and time course of the neuroimmunological response in cerebrospinal fluid. Mult Scler 15(12):1466–1480. https://doi.org/10.1177/1352458509348418

    Article  CAS  PubMed  Google Scholar 

  37. Robinson-Agramonte M, Reiber H, Cabrera-Gomez JA et al (2007) Intrathecal polyspecific immune response to neurotropic viruses in multiple sclerosis: a comparative report from Cuban patients. Acta Neurol Scand 115(5):312–318. https://doi.org/10.1111/j.1600-0404.2006.00755.x

    Article  CAS  PubMed  Google Scholar 

  38. Tumani H, Deisenhammer F, Giovannoni G et al (2011) Revised McDonald criteria: The persisting importance of cerebrospinal fluid analysis. Ann Neurol 70(3):520. https://doi.org/10.1002/ana.22508 (author reply 521)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks are due to the staff of the Institute of Virology who performed the immunoassays for the MRZ-AI and to the staff of the CSF laboratory at the Department of Neurology who analysed the CSF/serum samples for the routine parameters.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. The cost of the article-processing charge was covered by the Albert Ludwig University of Freiburg.

Author information

Authors and Affiliations

Authors

Contributions

TH and ES initiated this study. TH performed parts of the statistical analyses and wrote the manuscript. ES and KF identified the PCNSL patients; DE and LTvE provided the psychiatric patients group. RD performed parts of the statistical analyses. DH supervised performance of the immunoassays in the Institute of Virology. OS supervised the performance of the CSF analyses. OS and DE supervised the study. All authors helped to draft the manuscript, read and approved the final manuscript version.

Corresponding author

Correspondence to Tilman Hottenrott.

Ethics declarations

Ethics approval and consent to participate

The ethics committee of the University Freiburg approved the study (EK-Fr 489/14).

Consent for publication

Not applicable.

Availability of data and supporting materials section

The data that support the findings of this study are included in this study or available from the corresponding author upon reasonable request.

Conflicts of interest

TH received travel grants from Bayer Vital GmbH and Novartis. ES, KF, RD and DE report no conflicts of interest with this study. BB received travel grants and/or training expenses from Bayer Vital GmbH, Ipsen Pharma GmbH, Norvartis, and Genzyme, as well as lecture fees from Ipsen Pharma GmbH. DH received lecture fees from Serion. LTvE received consulting and lecture fees, grant and research support from Eli Lilly, Janssen-Cilag, Novartis, Shire, UCB, GSK, Servier, Janssen, and Cyberonics. OS and SR report receiving consulting and lecture fees, grant and research support from Baxter, Bayer Vital GmbH, Biogen Idec, Genzyme, Merck Serono, Novartis, RG, Sanofi-Aventis and Teva. Furthermore, SR indicates that he is a founding executive board member of ravo Diagnostika GmbH (Oltmannsstraße 5, D-79100 Freiburg, Germany), which is selling in vitro diagnostic medical devices for the detection of infectious diseases and paraneoplastic autoantibodies.

Author information

All authors except OS are doctors working at the Medical Centre-University Freiburg, Germany; OS is working as a consultant physician at the medical care unit in Konstanz, Germany. TH, RD and DE are resident physicians; ES and KF are consultant physicians; BB and DH are senior physicians. SR and LTvE are chief physicians.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hottenrott, T., Schorb, E., Fritsch, K. et al. The MRZ reaction and a quantitative intrathecal IgG synthesis may be helpful to differentiate between primary central nervous system lymphoma and multiple sclerosis. J Neurol 265, 1106–1114 (2018). https://doi.org/10.1007/s00415-018-8779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8779-x

Keywords

Navigation