Skip to main content

Advertisement

Log in

Hypothalamic dysfunction is related to sleep impairment and CSF biomarkers in Alzheimer’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Hypothalamus is a key brain region regulating several essential homeostatic functions, including the sleep–wake cycle. Alzheimer’s disease (AD) pathology affects nuclei controlling sleep–wake rhythm sited in this brain area. Since only post-mortem studies documented the relationship between hypothalamic atrophy and sleep–wake cycle impairment, we investigated in AD patients the possible hypothalamic in vivo alteration using 2-deoxy-2-(18F) fluoro-d-glucose ([18F]FDG) positron emission tomography ([18F]FDG PET), and its correlations with sleep impairment and cerebrospinal-fluid (CSF) AD biomarkers (tau proteins and β-amyloid42). We measured sleep by polysomnography, CSF AD biomarkers and orexin levels, and hypothalamic [18F]FDG PET uptake in a population of AD patients compared to age- and sex-matched controls. We documented the significant reduction of hypothalamic [18F]FDG PET uptake in AD patients (n = 18) compared to controls (n = 18) (p < 0.01). Moreover, we found the increase of CSF orexin levels coupled with the marked alteration of nocturnal sleep in AD patients than controls. We observed the significant association linking the reduction of both sleep efficiency and REM sleep to the reduction of hypothalamic [18F]FDG PET uptake in the AD group, which in turn negatively correlated with the total-tau/beta-amyloid42 ratio (index of more marked neurodegeneration). Moreover, controls but not AD patients showed [18F]FDG PET interconnections between hypothalamus and limbic system. We documented the in vivo dysfunction of hypothalamus in AD patients, which lost the physiological connections with limbic system and was correlated with both nocturnal sleep disruption and CSF AD biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saper CB, Lowell BB (2014) The hypothalamus. Curr Biol 24(23):R1111–R1116

    Article  CAS  PubMed  Google Scholar 

  2. Baloyannis SJ, Mavroudis I, Mitilineos D, Baloyannis IS, Costa VG (2015) The hypothalamus in Alzheimer’s disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 30(5):478–487

    Article  PubMed  Google Scholar 

  3. Ishii M, Iadecola C (2015) Metabolic and non-cognitive manifestations of Alzheimer’s disease: the hypothalamus as both culprit and target of pathology. Cell Metab 22(5):761–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012) Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol Aging 33(11):2585–2598

    Article  CAS  PubMed  Google Scholar 

  5. Fronczek R, van Geest S, Frölich M, Overeem S, Roelandse FW, Lammers GJ, Swaab DF (2012) Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33(8):1642–1650

    Article  CAS  PubMed  Google Scholar 

  6. Yaari R, Corey-Bloom J (2007) Alzheimer’s disease. Semin Neurol 27(1):32–41

    Article  PubMed  Google Scholar 

  7. Vitiello MV, Prinz PN (1989) Alzheimer’s disease. Sleep and sleep/wake patterns. Clin Geriatr Med 5(2):289–299

    CAS  PubMed  Google Scholar 

  8. Liguori C, Romigi A, Nuccetelli M et al (2014) Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol 71(12):1498–1505

    Article  PubMed  Google Scholar 

  9. Beaulieu-Bonneau S, Hudon C (2009) Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr 21(4):654–666

    Article  PubMed  Google Scholar 

  10. Bonanni E, Maestri M, Tognoni G et al (2005) Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res 14(3):311–317

    Article  PubMed  Google Scholar 

  11. Montplaisir J, Petit D, Lorrain D et al (1995) Sleep in Alzheimer’s disease: further considerations on the role of brainstem and forebrain cholinergic populations in sleep-wake mechanisms. Sleep 18(3):145–148

    Article  CAS  PubMed  Google Scholar 

  12. Maestri M, Carnicelli L, Tognoni G et al (2015) Non-rapid eye movement sleep instability in mild cognitive impairment: a pilot study. Sleep Med 16(9):1139–1145

    Article  PubMed  Google Scholar 

  13. Power AE (2004) Slow-wave sleep, acetylcholine, and memory consolidation. Proc Natl Acad Sci USA 101:1795–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang JL, Lim AS, Chiang WY et al (2015) Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol 78(2):317–322

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lim AS, Ellison BA, Wang JL et al (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease. Brain 137(Pt 10):2847–2861

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liguori C, Nuccetelli M, Izzi F et al (2016) Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s disease. Neurobiol Aging 40:120–126

    Article  CAS  PubMed  Google Scholar 

  17. Varrone A, Asenbaum S, Vander Borght T et al (2009) European Association of Nuclear Medicine Neuroimaging Committee. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103–2110

    Article  PubMed  Google Scholar 

  18. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  19. Romigi A, Liguori C, Placidi F et al (2014) Sleep disorders in spinal and bulbar muscular atrophy (Kennedy’s disease): a controlled polysomnographic and self-reported questionnaires study. J Neurol 261(5):889–893

    Article  PubMed  Google Scholar 

  20. Iber C, Ancoli-Israel S, Chesson A, Quan S, for the American Academy of Sleep Medicine (2007) The AASM manual for the scoring of sleep and associated events; rules, terminology and technical specifications, 1st edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  21. Liguori C, Olivola E, Pierantozzi M et al (2016) Cerebrospinal-fluid Alzheimer’s disease biomarkers and blood-brain barrier integrity in a natural population of cognitive intact Parkinson’s disease patients. CNS Neurol Disord Drug Targets. 5 Dec 2016. [Epub ahead of print]

  22. Liguori C, Placidi F, Albanese M et al (2014) CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis? J Sleep Res 23(4):420–424

    Article  PubMed  Google Scholar 

  23. Duits FH, Teunissen CE, Bouwman FH et al (2014) The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement 10:713–723

    Article  PubMed  Google Scholar 

  24. Liguori C, Romigi A, Mercuri NB et al (2014) Cerebrospinal-fluid orexin levels and daytime somnolence in frontotemporal dementia. J Neurol 261(9):1832–1836

    Article  CAS  PubMed  Google Scholar 

  25. Liguori C, Placidi F, Izzi F et al (2016) Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time. Sleep Breath 20(1):277–283

    Article  PubMed  Google Scholar 

  26. Alessandrini M, Micarelli A, Chiaravalloti A et al (2014) Cerebellar metabolic involvement and its correlations with clinical parameters in vestibular neuritis. J Neurol 261(10):1976–1985

    Article  PubMed  Google Scholar 

  27. Della Rosa PA, Cerami C, Gallivanone F et al (2014) A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 12(4):575–593

    Article  PubMed  Google Scholar 

  28. Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci 4(4):417–422

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lancaster JL, Rainey LH, Summerlin JL et al (1997) Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5(4):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liguori C, Chiaravalloti A, Sancesario G et al (2016) Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 43(11):2040–2049

    Article  CAS  PubMed  Google Scholar 

  31. Soonawala D, Amin T, Ebmeier KP et al (2002) Statistical parametric mapping of (99 m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 17(3):1193–1202

    Article  PubMed  Google Scholar 

  32. Pagani M, De Carli F, Morbelli S et al (2014) Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls A European Alzheimer’s Disease Consortium (EADC) study. Neuroimage Clin 7:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee DS, Kang H, Kim H et al (2008) Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur J Nucl Med Mol Imaging 35(9):1681–1691

    Article  PubMed  Google Scholar 

  34. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  35. Cross DJ, Anzai Y, Petrie EC et al (2013) Loss of olfactory tract integrity affects cortical metabolism in the brain and olfactory regions in aging and mild cognitive impairment. J Nucl Med 54(8):1278–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedman LF, Zeitzer JM, Lin L et al (2007) Alzheimer disease, increased wake fragmentation found in those with lower hypocretin-1. Neurology 68(10):793–794

    Article  CAS  PubMed  Google Scholar 

  37. Naismith SL, Lewis SJ, Rogers NL (2011) Sleep-wake changes and cognition in neurodegenerative disease. Prog Brain Res 190:21–52

    Article  PubMed  Google Scholar 

  38. Prinz PN, Vitaliano PP, Vitiello MV et al (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol Aging 3(4):361–370

    Article  CAS  PubMed  Google Scholar 

  39. Herholz K (2003) PET studies in dementia. Ann Nucl Med 17(2):79–89

    Article  PubMed  Google Scholar 

  40. Mosconi L (2013) Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. doi:10.1007/s40336-013-0026-y

    PubMed  PubMed Central  Google Scholar 

  41. Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage. 20(3):1894–1898

    Article  PubMed  Google Scholar 

  42. Shan L, Dauvilliers Y, Siegel JM (2015) Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 11(7):401–413

    Article  CAS  PubMed  Google Scholar 

  43. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594

    Article  CAS  PubMed  Google Scholar 

  44. Konadhode RR, Pelluru D, Blanco-Centurion C et al (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dauvilliers Y, Comte F, Bayard S et al (2010) A brain PET study in patients with narcolepsy–cataplexy. J Neurol Neurosurg Psychiatry 81(3):344–348

    Article  PubMed  Google Scholar 

  46. Huang YS, Liu FY, Lin CY et al (2016) Brain imaging and cognition in young narcoleptic patients. Sleep Med 24:137–144

    Article  PubMed  Google Scholar 

  47. Bozzali M, Padovani A, Caltagirone C, Borroni B (2011) Regional grey matter loss and brain disconnection across Alzheimer disease evolution. Curr Med Chem 18(16):2452–2458

    Article  CAS  PubMed  Google Scholar 

  48. Schmahmann JD, Doyon J, McDonald D et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10(3 Pt 1):233–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Carlo Chiaramonte for helping us in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Liguori.

Ethics declarations

Conflicts of interest

Claudio Liguori, Agostino Chiaravalloti, Nicola Biagio Mercuri, Marzia Nuccetelli, Giuseppe Sancesario, Francesca Izzi, Andrea Cimini, Sergio Bernardini, Orazio Schillaci, and Fabio Placidi declare no conflict of interest or financial disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liguori, C., Chiaravalloti, A., Nuccetelli, M. et al. Hypothalamic dysfunction is related to sleep impairment and CSF biomarkers in Alzheimer’s disease. J Neurol 264, 2215–2223 (2017). https://doi.org/10.1007/s00415-017-8613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8613-x

Keywords

Navigation