Skip to main content

Advertisement

Log in

Quantification of CSF biomarkers using an electrochemiluminescence-based detection system in the differential diagnosis of AD and sCJD

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The identification of reliable diagnostic tools for the differential diagnosis between sporadic Creutzfeldt–Jakob Disease (sCJD) and Alzheimer’s disease (AD) remains impeded by the existing clinical, neuropathological and molecular overlap between both diseases. The development of new tools for the quantitative measurement of biomarkers is gaining experimental momentum due to recent advances in high-throughput screening analysis and with the optimization of assays for their quantification in biological fluids, including cerebrospinal fluid (CSF). Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve clinical quality performance in a variety of sample types due to its high sensitivity and dynamic range. Here, we quantified the CSF levels of Tau-protein, β-amyloid 1-42 (Aβ42) and α-synuclein, as important biomarkers in CSF used in the differential diagnosis of neurodegenerative disorders in 12 AD, 12 sCJD and 12 control cases by singleplex ECL-based technology. Its performance has been compared to classical enzyme-linked immunosorbent assays (ELISA) to confront their clinical accuracy. ECL-based technology validates previous data obtained with ELISA and presents a higher performance in the discrimination of three analysed groups as determined by increased area under the curve (AUC) values for the three biomarkers. Importantly, α-synuclein levels detected by ECL allow an excellent discrimination between sCJD cases and AD and control cases, unveiling a new clinical approach for the differential diagnosis of sCJD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aguzzi A, Sigurdson C, Heikenwaelder M (2008) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40

    Article  CAS  PubMed  Google Scholar 

  2. Andreasen N, Vanmechelen E, Van d V, Davidsson P, Hesse C, Tarvonen S, Raiha I, Sourander L, Winblad B, Blennow K (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64:298–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto T, Klug G, McGlade A, Collins SJ, Nishida N (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178

    Article  CAS  PubMed  Google Scholar 

  4. Bibl M, Lewczuk P, Esselmann H, Mollenhauer B, Klafki HW, Welge V, Wolf S, Trenkwalder C, Otto M, Kornhuber J, Wiltfang J (2008) CSF amyloid-beta 1-38 and 1-42 in FTD and AD: biomarker performance critically depends on the detergent accessible fraction. Proteomics Clin Appl 2:1548–1556

    Article  CAS  PubMed  Google Scholar 

  5. Bibl M, Mollenhauer B, Lewczuk P, Esselmann H, Wolf S, Trenkwalder C, Otto M, Stiens G, Ruther E, Kornhuber J, Wiltfang J (2007) Validation of amyloid-beta peptides in CSF diagnosis of neurodegenerative dementias. Mol Psychiatry 12:671–680

    Article  CAS  PubMed  Google Scholar 

  6. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  7. Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect. Biol 3:a006833

    Google Scholar 

  8. Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, Raeber A, Varges D, Kim Y-S, Satoh K, Collins S, Zerr I (2015) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt–Jakob disease. Mol Neurobiol. doi:10.1007/s12035-015-9133-2

  9. Cramm M, Schmitz M, Karch A, Zafar S, Varges D, Mitrova E, Schroeder B, Raeber A, Kuhn F, Zerr I (2015) Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol 51:396–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gao L, Tang H, Nie K, Wang L, Zhao J, Gan R, Huang J, Zhu R, Feng S, Duan Z, Zhang Y, Wang L (2014) Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int J Neurosci [Epub ahead of print]

  11. Heinemann U, Krasnianski A, Meissner B, Varges D, Kallenberg K, Schulz-Schaeffer WJ, Steinhoff BJ, Grasbon-Frodl EM, Kretzschmar HA, Zerr I (2007) Creutzfeldt–Jakob disease in Germany: a prospective 12-year surveillance. Brain 130:1350–1359

    Article  CAS  PubMed  Google Scholar 

  12. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jesse S, Steinacker P, Cepek L, von Arnim CA, Tumani H, Lehnert S, Kretzschmar HA, Baier M, Otto M (2009) Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt–Jakob disease. J Alzheimers Dis 17:541–551

    CAS  PubMed  Google Scholar 

  14. Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I (2013) Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol 260:2722–2727

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I (2014) Using cerebrospinal fluid marker profiles in clinical diagnosis of dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. J Alzheimers Dis 38:63–73

    CAS  PubMed  Google Scholar 

  16. Kasai T, Tokuda T, Ishii R, Ishigami N, Tsuboi Y, Nakagawa M, Mizuno T, El-Agnaf OM (2014) Increased alpha-synuclein levels in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. J Neurol 261:1203–1209

    Article  CAS  PubMed  Google Scholar 

  17. Kruse N, Schulz-Schaeffer WJ, Schlossmacher MG, Mollenhauer B (2012) Development of electrochemiluminescence-based singleplex and multiplex assays for the quantification of alpha-synuclein and other proteins in cerebrospinal fluid. Methods 56:514–518

    Article  CAS  PubMed  Google Scholar 

  18. Lazaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Krohnert K, Klucken J, Pereira MD, Popova B, Kruse N, Mollenhauer B, Rizzoli SO, Braus GH, Danzer KM, Outeiro TF (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10:e1004741

    Article  PubMed Central  PubMed  Google Scholar 

  19. Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C, Gelpí E, Del Río JA, Zerr I, Ferrer I (2014) Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt–Jakob disease. Neuropathol Appl Neurobiol. doi:10.1111/nan.12175

  20. Mollenhauer B, Cullen V, Kahn I, Krastins B, Outeiro TF, Pepivani I, Ng J, Schulz-Schaeffer W, Kretzschmar HA, McLean PJ, Trenkwalder C, Sarracino DA, Vonsattel JP, Locascio JJ, El-Agnaf OM, Schlossmacher MG (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213:315–325

    Article  CAS  PubMed  Google Scholar 

  21. Mollenhauer B, Esselmann H, Roeber S, Schulz-Schaeffer WJ, Trenkwalder C, Bibl M, Steinacker P, Kretzschmar HA, Wiltfang J, Otto M (2011) Different CSF beta-amyloid processing in Alzheimer’s and Creutzfeldt–Jakob disease. J Neural Transm 118:691–697

    Article  CAS  PubMed  Google Scholar 

  22. Mollenhauer B, Trautmann E, Otte B, Ng J, Spreer A, Lange P, Sixel-Doring F, Hakimi M, Vonsattel JP, Nussbaum R, Trenkwalder C, Schlossmacher MG (2012) alpha-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. J Neural Transm 119:739–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Otto M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P, Ciesielczyk B, Schulz-Schaeffer W, Kretzschmar HA, Poser S (2002) Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology 58:192–197

    Article  CAS  PubMed  Google Scholar 

  24. Pan C, Korff A, Galasko D, Ginghina C, Peskind E, Li G, Quinn J, Montine TJ, Cain K, Shi M, Zhang J (2015) Diagnostic values of Cerebrospinal Fluid T-Tau and Abeta42 using meso scale discovery assays for Alzheimer’s disease. J Alzheimers Dis 45:709–719

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, Vanmechelen E, Forstl H, Kurz A (2003) Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt–Jakob disease from other dementias. Mol Psychiatry 8:343–347

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Saanchez-Valle R, Mitrovaa E, Stoeck K, Sklaviadis T, Kulczycki J, Hess K, Bodemer M, Slivarichova D, Saiz A, Calero M, Ingrosso L, Knight R, Janssens AC, van Duijn CM, Zerr I (2006) CSF tests in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology 67:637–643

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Juan P, Sanchez-Valle R, Green A, Ladogana A, Cuadrado-Corrales N, Mitrova E, Stoeck K, Sklaviadis T, Kulczycki J, Hess K, Krasnianski A, Equestre M, Slivarichova D, Saiz A, Calero M, Pocchiari M, Knight R, van Duijn CM, Zerr I (2007) Influence of timing on CSF tests value for Creutzfeldt–Jakob disease diagnosis. J Neurol 254:901–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schmidt C, Wolff M, Weitz M, Bartlau T, Korth C, Zerr I (2011) Rapidly progressive Alzheimer disease. Arch Neurol 68:1124–1130

    Article  PubMed  Google Scholar 

  29. Skillback T, Rosen C, Asztely F, Mattsson N, Blennow K, Zetterberg H (2014) Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt–Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol 71:476–483

    Article  PubMed  Google Scholar 

  30. Stewart T, Liu C, Ginghina C, Cain KC, Auinger P, Cholerton B, Shi M, Zhang J (2014) Cerebrospinal fluid alpha-synuclein predicts cognitive decline in Parkinson disease progression in the DATATOP cohort. Am J Pathol 184:966–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stoeck K, Sanchez-Juan P, Gawinecka J, Green A, Ladogana A, Pocchiari M, Sanchez-Valle R, Mitrova E, Sklaviadis T, Kulczycki J, Slivarichova D, Saiz A, Calero M, Knight R, Aguzzi A, Laplanche JL, Peoc’h K, Schelzke G, Karch A, van Duijn CM, Zerr I (2012) Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 135:3051–3061

    Article  PubMed Central  PubMed  Google Scholar 

  32. Stoeck K, Sanchez-Juan P, Gawinecka J, Green A, Ladogana A, Pocchiari M, Sanchez-Valle R, Mitrova E, Sklaviadis T, Kulczycki J, Slivarichova D, Saiz A, Calero M, Knight R, Aguzzi A, Laplanche JL, Peoc’h K, Schelzke G, Karch A, van Duijn CM, Zerr I (2012) Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 135:3051–3061

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289:2094–2103

    Article  PubMed  Google Scholar 

  34. Tateno F, Sakakibara R, Kawai T, Kishi M, Murano T (2012) Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis Assoc Disord 26:213–216

    Article  CAS  PubMed  Google Scholar 

  35. Tokuda T, Salem SA, Allsop D, Mizuno T, Nakagawa M, Qureshi MM, Locascio JJ, Schlossmacher MG, El-Agnaf OM (2006) Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem Biophys Res Commun 349:162–166

    Article  CAS  PubMed  Google Scholar 

  36. van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YA, van der Flier WM, Scheltens P (2011) Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 49:353–366

    PubMed  Google Scholar 

  37. Van EB, Green AJ, Pals P, Martin JJ, Cras P (1999) Decreased levels of Amyloid-beta 1-42 in cerebrospinal fluid of Creutzfeldt–Jakob disease patients. J Alzheimers Dis 1:419–424

    Google Scholar 

  38. Wennstrom M, Surova Y, Hall S, Nilsson C, Minthon L, Bostrom F, Hansson O, Nielsen HM (2013) Low CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. PLoS ONE 8:e53250

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretzschmar HA, Weber T (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann Neurol 43:32–40

    Article  CAS  PubMed  Google Scholar 

  40. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U, Breithaupt M, Varges D, Meissner B, Ladogana A, Schuur M, Haik S, Collins SJ, Jansen GH, Stokin GB, Pimentel J, Hewer E, Collie D, Smith P, Roberts H, Brandel JP, van DC, Pocchiari M, Begue C, Cras P, Will RG, Sanchez-Juan P (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain 132:2659–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro CJ, Knight RS, Bernheimer H, Cardone F, Delasnerie-Laupretre N, Cuadrado CN, Ladogana A, Bodemer M, Fletcher A, Awan T, Ruiz BA, Budka H, Laplanche JL, Will RG, Poser S (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt–Jakob disease. Neurology 55:811–815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Barbara Ciesielczyk and Siri Reuter for excellent technical assistance. The work was supported by: PRIORITY PROJECT (EU): Protecting the food chain from prions: shaping European priorities through basic and applied research (FP7-KBBE-2007-2A), JPND––DEMTEST (EU): Biomarker-based diagnosis of rapidly progressive dementias––optimization of diagnostic protocols (01ED1201A) and Alzheimer-Forschungs-Initiative e.V. (AFI 12851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Llorens.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical standard

The study has been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. As stated in the text, all persons gave their informed consent prior to their inclusion in the study and samples were anonymised.

Electronic supplementary material

Below is the link to the electronic supplementary material.

415_2015_7837_MOESM1_ESM.pptx

Supplementary material 1 (PPTX 54 kb). Correlations between S100B and α-synuclein levels in sCJD cases. Graph showing the correlation between S100B and α-synuclein levels in the CSF of sCJD cases. R value is indicated. S100B cut-off value for sCJD diagnostic is shown. One sCJD case is under the S100 cut-off value 4.2 ng/ml). The same case presents the lowest α-synuclein level among the sCJD cohort

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorens, F., Kruse, N., Schmitz, M. et al. Quantification of CSF biomarkers using an electrochemiluminescence-based detection system in the differential diagnosis of AD and sCJD. J Neurol 262, 2305–2311 (2015). https://doi.org/10.1007/s00415-015-7837-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7837-x

Keywords

Navigation