Skip to main content

Advertisement

Log in

Regional covariance of muscarinic acetylcholine receptors in Alzheimer’s disease using (R, R) [123I]-QNB SPECT

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterised by deficits in cholinergic neurotransmission and subsequent receptor changes. We investigated 123I-iodo-quinuclidinyl-benzilate (QNB) SPECT images using spatial covariance analysis (SCA), to detect an M1/M4 receptor spatial covariance pattern (SCP) that distinguished AD from controls. Furthermore, a corresponding regional cerebral blood flow (rCBF) SCP was also derived. Thirty-nine subjects (15 AD and 24 healthy elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT. Voxel SCA was simultaneously applied to the set of smoothed/registered scans, generating a series of eigenimages representing common intercorrelated voxels across subjects. Linear regression identified individual M1/M4 and rCBF SCPs that discriminated AD from controls. The M1/M4 SCP showed concomitant decreased uptake in medial temporal, inferior frontal, basal forebrain and cingulate relative to concomitant increased uptake in frontal poles, occipital, pre-post central and precuneus/superior parietal regions (F 1,37 = 85.7, p < 0.001). A largely different perfusion SCP was obtained showing concomitant decreased rCBF in medial and superior temporal, precuneus, inferior parietal and cingulate relative to concomitant increased rCBF in cerebellum, pre-post central, putamen, fusiform and brain stem/midbrain regions (F 1,37 = 77.5, p < 0.001). The M1/M4 SCP expression correlated with the duration of cognitive symptoms (r = 0.90, p < 0.001), whereas the rCBF SCP expression negatively correlated with MMSE, CAMCOG and CAMCOGmemory (r ≥ |0.63|, p ≤ 0.006). 123I-QNB SPECT revealed an M1/M4 basocortical covariance pattern, distinct from rCBF, reflecting the duration of disease rather than current clinical symptoms. This approach could be more sensitive than univariate methods in characterising the cholinergic/rCBF changes that underpin the clinical phenotype of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  CAS  PubMed  Google Scholar 

  2. Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923

    Article  CAS  PubMed  Google Scholar 

  3. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, Kaplitt MG, Feigin A, Eidelberg D (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed Central  PubMed  Google Scholar 

  4. Asllani I, Habeck C, Scarmeas N, Borogovac A, Brown TR, Stern Y (2008) Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab 28:725–736

    Article  PubMed Central  PubMed  Google Scholar 

  5. Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  CAS  PubMed  Google Scholar 

  6. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    Article  CAS  PubMed  Google Scholar 

  7. Boundy KL, Barnden LR, Katsifis AG, Rowe CC (2005) Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 12:421–425

    Article  CAS  PubMed  Google Scholar 

  8. Brown D, Chisholm JA, Owens J, Pimlott S, Patterson J, Wyper D (2003) Acetylcholine muscarinic receptors and response to anti-cholinesterase therapy in patients with Alzheimer’s disease. Eur J Nucl Med Mol Imaging 30:296–300

    Article  CAS  PubMed  Google Scholar 

  9. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference. Springer Verlag, New York

    Google Scholar 

  10. Claus JJ, Dubois EA, Booij J, Habraken J, de Munck JC, van Herk M, Verbeeten B Jr, van Royen EA (1997) Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur J Nucl Med 24:602–608

    CAS  PubMed  Google Scholar 

  11. Colloby SJ, Firbank MJ, Pakrasi S, Lloyd JJ, Driver I, McKeith IG, Williams ED, O’Brien JT (2008) A comparison of 99mTc-exametazime and 123I-FP-CIT SPECT imaging in the differential diagnosis of Alzheimer’s disease and dementia with Lewy bodies. Int Psychogeriatr 1–17

  12. Colloby SJ, Taylor JP, Davison CM, Lloyd JJ, Firbank MJ, McKeith IG, O’Brien JT (2013) Multivariate spatial covariance analysis of 99mTc-exametazime SPECT images in dementia with Lewy bodies and Alzheimer’s disease: utility in differential diagnosis. J Cereb Blood Flow Metab 33:612–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    Article  CAS  PubMed  Google Scholar 

  14. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  15. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155

    Article  CAS  PubMed  Google Scholar 

  16. Eckert T, Van Laere K, Tang C, Lewis DE, Edwards C, Santens P, Eidelberg D (2007) Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 34:496–501

    Article  PubMed  Google Scholar 

  17. Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E (1999) Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab 19:794–802

    Article  CAS  PubMed  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  19. Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177

    Article  CAS  PubMed  Google Scholar 

  20. Geula C, Mesulam MM, Saroff DM, Wu CK (1998) Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease. J Neuropathol Exp Neurol 57:63–75

    Article  CAS  PubMed  Google Scholar 

  21. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704

    Article  CAS  PubMed  Google Scholar 

  22. Habeck C, Foster NL, Perneczky R, Kurz A, Alexopoulos P, Koeppe RA, Drzezga A, Stern Y (2008) Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage 40:1503–1515

    Article  PubMed Central  PubMed  Google Scholar 

  23. Habeck C, Krakauer JW, Ghez C, Sackeim HA, Eidelberg D, Stern Y, Moeller JR (2005) A new approach to spatial covariance modeling of functional brain imaging data: ordinal trend analysis. Neural Comput 17:1602–1645

    Article  PubMed  Google Scholar 

  24. Habeck C, Stern Y (2010) Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem Biophys 58:53–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS (1998) Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 50:1563–1571

    Article  CAS  PubMed  Google Scholar 

  26. Kemp PM, Holmes C, Hoffmann S, Wilkinson S, Zivanovic M, Thom J, Bolt L, Fleming J, Wilkinson DG (2003) A randomised placebo controlled study to assess the effects of cholinergic treatment on muscarinic receptors in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:1567–1570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim SY, Choi SH, Rollema H, Schwam EM, McRae T, Dubrava S, Jacobsen J (2014) Phase II crossover trial of varenicline in mild-to-moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 37:232–245

    Article  CAS  PubMed  Google Scholar 

  28. Lee KS, He XS, Jones DW, Coppola R, Gorey JG, Knable MB, deCosta BR, Rice KC, Weinberger DR (1996) An improved method for rapid and efficient radioiodination of iodine-123-IQNB. J Nucl Med 37:2021–2024

    CAS  PubMed  Google Scholar 

  29. Lenz RA, Pritchett YL, Berry SM, Llano DA, Han S, Berry DA, Sadowsky CH, Abi-Saab WM, Saltarelli MD (2015) Adaptive, dose-finding phase 2 trial evaluating the safety and efficacy of ABT-089 in mild to moderate Alzheimer disease. Alzheimer Dis Assoc Disord

  30. Luo WL, Nichols TE (2003) Diagnosis and exploration of massively univariate neuroimaging models. Neuroimage 19:1014–1032

    Article  PubMed  Google Scholar 

  31. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  32. Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    Article  CAS  PubMed  Google Scholar 

  33. Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, Missimer J, Leenders KL, Eidelberg D (1999) Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 40:1264–1269

    CAS  PubMed  Google Scholar 

  34. Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119

    Article  CAS  PubMed  Google Scholar 

  35. Overk CR, Felder CC, Tu Y, Schober DA, Bales KR, Wuu J, Mufson EJ (2010) Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer’s disease. J Chem Neuroanat 40:63–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pakrasi S, Colloby SJ, Firbank MJ, Perry EK, Wyper DJ, Owens J, McKeith IG, Williams ED, O’Brien JT (2007) Muscarinic acetylcholine receptor status in Alzheimer’s disease assessed using (R, R) 123I-QNB SPECT. J Neurol 254:907–913

    Article  PubMed  Google Scholar 

  37. Perry E, Court J, Goodchild R, Griffiths M, Jaros E, Johnson M, Lloyd S, Piggott M, Spurden D, Ballard C, McKeith I, Perry R (1998) Clinical neurochemistry: developments in dementia research based on brain bank material. J Neural Transm 105:915–933

    Article  CAS  PubMed  Google Scholar 

  38. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Piggott M, Owens J, O’Brien J, Paling S, Wyper D, Fenwick J, Johnson M, Perry R, Perry E (2002) Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R, R)-I-QNB and (R, S)-I-QNB to human brain. J Che Neuroanat 24:211–223

    Article  CAS  Google Scholar 

  40. Piggott MA, Owens J, O’Brien J, Colloby S, Fenwick J, Wyper D, Jaros E, Johnson M, Perry RH, Perry EK (2003) Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease. J Chem Neuroanat 25:161–173

    Article  CAS  PubMed  Google Scholar 

  41. Potter PE, Rauschkolb PK, Pandya Y, Sue LI, Sabbagh MN, Walker DG, Beach TG (2011) Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer’s disease. Acta Neuropathol 122:49–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ridgway GR, Omar R, Ourselin S, Hill DL, Warren JD, Fox NC (2009) Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage 44:99–111

    Article  PubMed  Google Scholar 

  43. Rinne JO, Laakso K, Lonnberg P, Molsa P, Paljarvi L, Rinne JK, Sako E, Rinne UK (1985) Brain muscarinic receptors in senile dementia. Brain Res 336:19–25

    Article  CAS  PubMed  Google Scholar 

  44. Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S, Goddard R (1986) CAMDEX a standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry 149:698–709

    Article  CAS  PubMed  Google Scholar 

  45. Samuel W, Terry RD, DeTeresa R, Butters N, Masliah E (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 51:772–778

    Article  CAS  PubMed  Google Scholar 

  46. Scarmeas N, Habeck CG, Zarahn E, Anderson KE, Park A, Hilton J, Pelton GH, Tabert MH, Honig LS, Moeller JR, Devanand DP, Stern Y (2004) Covariance PET patterns in early Alzheimer’s disease and subjects with cognitive impairment but no dementia: utility in group discrimination and correlations with functional performance. Neuroimage 23:35–45

    Article  PubMed Central  PubMed  Google Scholar 

  47. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986) Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 46:288–293

    Article  CAS  PubMed  Google Scholar 

  48. Shiozaki K, Iseki E, Uchiyama H, Watanabe Y, Haga T, Kameyama K, Ikeda T, Yamamoto T, Kosaka K (1999) Alterations of muscarinic acetylcholine receptor subtypes in diffuse Lewy body disease: relation to Alzheimer’s disease. J Neurol Neurosurg Psychiatry 67:209–213 (See comments)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Van Beek AH, Claassen JA (2011) The cerebrovascular role of the cholinergic neural system in Alzheimer’s disease. Behav Brain Res 221:537–542

    Article  PubMed  Google Scholar 

  50. Warren NM, Piggott MA, Lees AJ, Perry EK, Burn DJ (2008) Intact coupling of M1 receptors and preserved M2 and M4 receptors in the cortex in progressive supranuclear palsy: contrast with other dementias. J Chem Neuroanat 35:268–274

    Article  CAS  PubMed  Google Scholar 

  51. Weinberger DR, Gibson R, Coppola R, Jones DW, Molchan S, Sunderland T, Berman KF, Reba RC (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 48:169–176

    Article  CAS  PubMed  Google Scholar 

  52. White P, Hiley CR, Goodhardt MJ, Carrasco LH, Keet JP, Williams IE, Bowen DM (1977) Neocortical cholinergic neurons in elderly people. Lancet 1:668–671

    Article  CAS  PubMed  Google Scholar 

  53. Wyper DJ, Brown D, Patterson J, Owens J, Hunter R, Teasdale E, McCulloch J (1993) Deficits in iodine-labelled 3-quinuclidinyl benzilate binding in relation to cerebral blood flow in patients with Alzheimer’s disease. Eur J Nucl Med 20:379–386

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida T, Kuwabara Y, Ichiya Y, Sasaki M, Fukumura T, Ichimiya A, Takita M, Ogomori K, Masuda K (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42

    Article  CAS  PubMed  Google Scholar 

  55. Zemek F, Drtinova L, Nepovimova E, Sepsova V, Korabecny J, Klimes J, Kuca K (2014) Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf 13:759–774

    CAS  PubMed  Google Scholar 

  56. Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL, Kuhl DE (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39:275–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Medical Research Council UK [Grant number G9817682], the National Institute for Health Research (NIHR), Research for Public Benefit, Wellcome Trust (Fellowship funding for J-P.T), NIHR Newcastle Biomedical Research Centre in Ageing and Chronic Disease and Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals, NHS Foundation Trust and Newcastle University and the NIHR Dementia Biomedical Research Unit at Cambridge University Hospitals, NHS Foundation Trust and the University of Cambridge. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Colloby.

Ethics declarations

Conflicts of interest

Dr. Colloby reports no disclosures. Professor Wyper has no disclosures. Dr. Taylor has been a consultant of Lundbeck and received honoraria for talks from GE Healthcare and Flynn pharmaceuticals. Professor O’Brien has been a consultant for GE Healthcare, Lilly, Bayer Healthcare, TauRx and Nutricia and has received honoraria for talks from GE Healthcare, Lilly and Novartis. Professor McKeith has been a consultant for GE Healthcare, Bayer Healthcare and Nutricia.

Ethical standard

This study has been approved by the appropriate committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Additional information

J. T. O’Brien and J. -P. Taylor are joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colloby, S.J., McKeith, I.G., Wyper, D.J. et al. Regional covariance of muscarinic acetylcholine receptors in Alzheimer’s disease using (R, R) [123I]-QNB SPECT. J Neurol 262, 2144–2153 (2015). https://doi.org/10.1007/s00415-015-7827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7827-z

Keywords

Navigation