Skip to main content

Advertisement

Log in

Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Asymptomatic visual loss is a feature of multiple sclerosis (MS) but its relative impact on distinct retinocortical pathways is still unclear. The goal of this work was to investigate patterns of subclinical visual impairment in patients with MS with and without clinically associated previous optic neuritis (ON). We have used functional methods that assess parvo-, konio- and magnocellular pathways in order to compare pathophysiological mechanisms of damage in a population of 44 subjects with MS (87 eyes), with and without a previous episode of ON. These methods included chromatic contrast sensitivity across multiple chromatic axes (Cambridge Colour Test–parvo/konio pathways), perimetric achromatic contrast sensitivity for the magno pathway [frequency doubling technique (FDT)] and pattern visual evoked potentials (VEP). These measures were correlated with field sensitivity measures obtained using conventional automated static perimetry (ASP) and were also compared with conventional clinical chromatic/achromatic contrast sensitivity chart-based measures. We have found evidence for uncorrelated damage of all retinocortical pathways only in patients with MS without ON. VEP evidence for axonal damage was found in this group supporting the emerging notion of axonal damage even in sub-clinical stages of ON/MS pathophysiology. Only in this group was significant correlation of functional measures with disease stage observed, suggesting that distinct pathophysiological milestones are present before and after ON has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shapley RM, Hawken JM (1999) Parallel retino-cortical channels and luminance. In: Gegenfurtner KR, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press Cambridge, UK, pp 221–234

    Google Scholar 

  2. Harrison AC, Becker WJ, Stell WK (1987) Colour vision abnormalities in multiple sclerosis. Can J Neurol Sci 14:279–285

    PubMed  CAS  Google Scholar 

  3. Travis D, Thompson P (1989) Spatiotemporal contrast sensitivity and colour vision in multiple sclerosis. Brain 112:283–303

    Article  PubMed  Google Scholar 

  4. Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119:723–740

    Article  PubMed  Google Scholar 

  5. Caruana PA, Davies MB, Weatherby SJ, Williams R, Haq N, Foster DH et al (2000) Correlation of MRI lesions with visual psychopysical deficit in secondary progressive multiple sclerosis. Brain 123:1471–1480

    Article  PubMed  Google Scholar 

  6. Optic Neuritis Study Group (1997) The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology 49:1404–1413

    Google Scholar 

  7. Ghezzi A, Martinelli V, Rodegher M, Zaffaroni M, Comi G (2000) The prognosis of idiopathic optic neuritis. Neurol Sci 21:865–869

    Article  Google Scholar 

  8. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S et al (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    PubMed  CAS  Google Scholar 

  9. Korsholm K, Madsen KH, Frederiksen JL, Skimminge A, Lund TE (2007) Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain 130:1244–1253

    Article  PubMed  Google Scholar 

  10. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  11. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  12. Regan BC, Reffin JP, Mollon JD (1994) Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Res 34:1279–1299

    Article  PubMed  CAS  Google Scholar 

  13. Castelo-Branco M, Faria P, Forjaz V, Kozak LR, Azevedo H (2004) Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures. Invest Ophthalmol Vis Sci 45:499–505

    Article  PubMed  Google Scholar 

  14. Campos SH, Forjaz V, Kozak LR, Silva E, Castelo-Branco M (2005) Quantitative phenotyping of chromatic dysfunction in Best macular distrophy. Arch Ophthalmol 123:944–949

    Article  PubMed  Google Scholar 

  15. Silva MF, Faria P, Regateiro FS, Forjaz V, Januário C, Freire A et al (2005) Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson′s disease. Brain 128:2260–2271

    Article  PubMed  CAS  Google Scholar 

  16. Roth A, Lanthony P (1999) Vision des Couleurs. In: Risse JF (ed) Exploration de la fonction visuelle. Applications au domaine sensorial de l’oeil normal et en pathologie. Société Française d’Opthtalmologie et Masson, Paris, pp 129–151

    Google Scholar 

  17. Rayleigh L (1881) Experiments on colour. Nature 25:64–66

    Article  Google Scholar 

  18. Moreland JD, Kerr J (1978) Optimization of stimuli for tritanomaloscopy. Mod Prob Ophthalmol 19:162–166

    CAS  Google Scholar 

  19. Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633

    Article  Google Scholar 

  20. Sakai T, Matsushima M, Shikishima K, Kitahara K (2007) Comparison of standard automated perimetry with matrix frequency-doubling technology in patients with resolved optic neuritis. Ophthalmology 114:949–956

    Article  PubMed  Google Scholar 

  21. Castelo-Branco M, Mendes M, Silva MF, Januário C, Machado E, Pinto A et al (2006) Specific retinotopically based magnocellular impairment in a patient with medial visual dorsal stream damage. Neuropsychologia 44:238–253

    Article  PubMed  Google Scholar 

  22. Roth A, Lanthony P (1999) Fonctions de sensibilité au contraste de luminance. In: Risse JF (ed) Exploration de la fonction visuelle. Applications au domaine sensorial de l’óeil normal et en pathologie. Société Française d’Opthtalmologie et Masson, Paris, pp 81–98

    Google Scholar 

  23. Morales J, Weitzmann ML, González de la Rosa M (2000) Comparison between tendency-oriented perimetry (TOP) and octopus threshold perimetry. Ophthalmology 107:34–42

    Article  Google Scholar 

  24. Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study. Brain 124:468–479

    Article  PubMed  CAS  Google Scholar 

  25. Brusa A, Jones SJ, Kappor R, Miller DH, Plant GT (1999) Long term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potential. J Neurol 246:776–782

    Article  PubMed  CAS  Google Scholar 

  26. Silva MF, Maia-Lopes S, Mateus C, Guerreiro M, Sampaio J, Faria P et al (2008) Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vision Res 48:127–135

    Article  PubMed  Google Scholar 

  27. Moura AL, Teixeira RA, Oiwa NN, Costa MF, Feitosa-Santana C, Callegaro D et al (2008) Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge colour test. Vis Neurosci 25:463–468

    Article  PubMed  Google Scholar 

  28. Mullen KT, Plant GT (1986) Colour and luminance vision in human optic neuritis. Brain 109:1–13

    Article  PubMed  Google Scholar 

  29. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2001) Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124:1813–1820

    Article  PubMed  CAS  Google Scholar 

  30. Noval S, Contreras I, Rebolleda G, Munoz-Negrete FJ (2006) Optical coherence tomography versus automated perimetry for follow-up of optic neuritis. Acta Opthalmol Scand 84:790–794

    Article  Google Scholar 

  31. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML et al (2006) Relation of visual function to retinal fiber layer thickness in multiple sclerosis. Ophthalmology 113:324–332

    Article  PubMed  Google Scholar 

  32. Frederiksen JL, Petrera J (1999) Serial visual evoked potential in 90 untreated patients with acute optic neuritis. Surv Ophthalmol 44:54–62

    Article  Google Scholar 

  33. Sater RA, Rostami AM, Galetta S, Farber RE, Bird SJ (1999) Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J Neurol Sci 171:79–83

    Article  PubMed  CAS  Google Scholar 

  34. Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT et al (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287

    PubMed  Google Scholar 

  35. Wray SH (1994) Optic neuritis. In: Albert DM, Jakobiec FA (eds) Principles and practise of ophthalmology. Pa, WB Saunders, Philadelphia, pp 2539–2550

    Google Scholar 

  36. Gout O, Lebrun-Frenay C, Labauge P, Le Page GE, Clavelou P, Allouche S, PEDIAS Group (2011) Prior suggestive symptoms in one-third of patients consulting for a “first” demyelinating event. J Neurol Neurosurg Psychiatry 82:323–325

    Google Scholar 

  37. Noble J, Forooghian F, Sproule M, Westall C, O’Connor P (2006) Utility of the national eye institute VFQ-25 questionnaire in a heterogeneous group of multiple sclerosis patients. Am J Ophthalmol 142(3):464–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Portuguese Science and Technology Foundation (FCT): PTDC_SAU_NEU_68483_2006 and PIC/IC/82986/2007, as well as by the National Brain Imaging Network of Portugal (BIN).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aldina Reis or Miguel Castelo-Branco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, A., Mateus, C., Macário, M.C. et al. Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis. J Neurol 258, 1695–1704 (2011). https://doi.org/10.1007/s00415-011-6008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6008-y

Keywords

Navigation