Skip to main content

Advertisement

Log in

The thalamic ultrastructural abnormalities in paroxysmal kinesigenic choreoathetosis: a diffusion tensor imaging study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Paroxysmal kinesigenic choreoathetosis (PKC) is a rare neurologic disorder. There are not apparent morphological changes in patients with idiopathic PKC. The purpose of this study is to determine whether ultrastructural changes are in the brain of patients with idiopathic PKC using diffusion tensor imaging. From May 2007 to August 2008, seven patients with idiopathic PKC were included. The mean age at initial onset was 11.7 ± 3.1 (range 8–17) years, and the mean disease duration was 6.9 ± 5.1 (range 1–14) years. Seven subjects of an age- and sex-matched control group were recruited. DTI data were obtained with a 3-T scanner. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained in eight brain regions of interest. Patients with idiopathic PKC had significantly higher FA values than controls in the right thalamus (P < 0.05 Bonferroni corrected). Patients also had lower MD values than controls in the left thalamus (P < 0.05 Bonferroni corrected). FA and MD values were not significantly correlated with age of onset, gender, frequency of attack and duration of the disease. The results showed that in patients with idiopathic PKC, diffusion tensor imaging discloses distinct ultrastructural abnormalities in the thalamus. DTI is a sensitive neuroradiologic technique for detecting cerebral alterations in patients even without visible lesions on conventional MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bhatia KP (1999) The paroxysmal dyskinesias. J Neurol 246:149–155

    Article  CAS  PubMed  Google Scholar 

  2. Fahn S (1994) The paroxysmal dyskinesias. In: Marsden CD, Fahn S (eds) Movement disorders 3. Butterworth-Heinemann, Oxford, pp 310–345

    Google Scholar 

  3. Bennett LB, Roach ES, Bowcock AM (2000) A locus for paroxysmal kinesignic dyskinesia maps to human chromosome 16. Neurology 54:125–130

    CAS  PubMed  Google Scholar 

  4. Ko CH, Kong CK, Ngai WT, Ma KM (2001) Ictal 99mTc ECD SPECT in paroxysmal kinesigenic choreoathetosis. Pediatr Neurol 24:225–227

    Article  CAS  PubMed  Google Scholar 

  5. Shirane S, Sasaki M, Kogure D, Matsuda H, Hashimoto T (2001) Increased ictal perfusion of the thalamus in paroxysmal kinesigenic dyskinesia. J Neurol Neurosurg Psychiatry 71:408–410

    Article  CAS  PubMed  Google Scholar 

  6. Volonte MA, Perani D, Lanzi R, Poggi A, Anchisi D, Balini A et al (2001) Regression of ventral striatum hypometabolism after calcium/calcitriol therapy in paroxysmal kinesigenic choreoathetosis due to idiopathic primary hypoparathyrodism. J Neurol Neurosurg Psychiatry 71:691–695

    Article  CAS  PubMed  Google Scholar 

  7. Pierpaoli C, Jezzard P, Blasser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    CAS  PubMed  Google Scholar 

  8. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nature Rev Neurosci 4:469–480

    Article  CAS  Google Scholar 

  9. Bealieu C (2002) The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 15:435–455

    Article  Google Scholar 

  10. Fabbrinia G, Pantanoa P, Totaro P, Calistria V, Colosimoa C, Carmellinia M et al (2008) Diffusion tensor imaging in patients with primary cervical dystonia and in patients with blepharospasm. Eur J Neurol 15:185–189

    Google Scholar 

  11. Chen Qin, Lui Su, Li Chun-Xiao, Jiang Li-Jun, Ou-Yang Luo, Tang He-Han et al (2008) MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI. Epilepsy Res 80:83–89

    Article  PubMed  Google Scholar 

  12. Chan LL, Rumpel H, Yap K, Lee E, Loo HV, Ho GL et al (2007) Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry 78:1383–1386

    Article  PubMed  Google Scholar 

  13. Stefan K, Bogdan D, Charlotte VG, Carlton C, Zoltan N, Philip AC et al (2008) White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 131:196–204

    Google Scholar 

  14. Kertesz A (1967) Paroxysmal kinesigenic choreoathetosis: an entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology 17:680–690

    CAS  PubMed  Google Scholar 

  15. Sunohara N, Mukoyama M, Mano Y, Satoyoshi E (1984) Action-induced rhythmic dystonia: an autopsy case. Neurology 34:321–327

    CAS  PubMed  Google Scholar 

  16. Camac A, Greene P, Khandji A (1990) Paroxysmal kinesigenic dystonic choreoathetosis associated with a thalamic infarct. Mov Disord 5:235–238

    Article  CAS  PubMed  Google Scholar 

  17. Merchut MP, Brumlik J (1986) Painful tonic spasms caused by putaminal infarction. Stroke 17:1319–1321

    CAS  PubMed  Google Scholar 

  18. Gilroy J (1982) Abnormal computed tomograms in paroxysmal kinesigenic choreoathetosis. Ann Neurol 39:779–780

    CAS  Google Scholar 

  19. Micheli F, Fernandez Pardal MM, Casas Parera I, Giannaula R (1986) Sporadic paroxysmal dystonic choreoathetosis associated with basal ganglia calcifications. Ann Neurol 20:750

    Article  CAS  PubMed  Google Scholar 

  20. Riley DE (1996) Paroxysmal kinesigenic dystonia associated with a medullary lesion. Mov Disord 11:738–740

    Article  CAS  PubMed  Google Scholar 

  21. Cosentino C, Torres L, Flores M, Cuba JM (1996) Paroxysmal kinesigenic dystonia and spinal cord lesion. Mov Disord 11:453–455

    Article  CAS  PubMed  Google Scholar 

  22. Melhem ER, Itoh R, Jones L, Barker PB (2000) Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. Am J Neuroradiol 21:1813–1820

    CAS  PubMed  Google Scholar 

  23. Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21:1317–1325

    Article  PubMed  Google Scholar 

  24. Harris JA, Guglielmotti V, Bentivoglio M (1996) Diencephalic asymmetries. Neurosci Biobehav Rev 20:637–643

    Article  CAS  PubMed  Google Scholar 

  25. Fabiano AJ, Horsfield MA, Bakshi R (2005) Interhemispheric asymmetry of brain diffusivity in normal individuals: a diffusion-weighted MR imaging study. Am J Neuroradiol 26:1089–1094

    PubMed  Google Scholar 

  26. Ceballos-Baumann AO, Passingham RE, Marsden CD, Brooks DJ (1995) Motor reorganization in acquired hemidystonia. Ann Neurol 37:746–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant nos. 30625024 and 30728017) and Programs from the State Education Ministry (grant no. SRFDP-20060610073).

Conflict of interest statement

There was no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhou.

Additional information

B. Zhou and Q. Chen contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Chen, Q., Gong, Q. et al. The thalamic ultrastructural abnormalities in paroxysmal kinesigenic choreoathetosis: a diffusion tensor imaging study. J Neurol 257, 405–409 (2010). https://doi.org/10.1007/s00415-009-5334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5334-9

Keywords

Navigation