Skip to main content

Advertisement

Log in

Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis

  • REVIEW
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The afferent visual pathway is commonly affected in MS. Assessment of the afferent visual pathway using clinical, imaging and electrophysiological methods not only provides insights into the pathophysiology of MS, but also provides a method of investigating potential therapeutic measures in MS. This review summarises the various assessment methods, in particular imaging techniques of the visual pathway. Retinal nerve fibre layer (RNFL) thickness is usually reduced following an episode of optic neuritis. Techniques such as optical coherence tomography, scanning laser polarimetry, and confocal scanning laser ophthalmoscopy are used to quantify RNFL thickness. MRI of the optic nerve is not routinely used in the diagnosis of MS or optic neuritis, but is valuable in atypical cases and in research. T2- weighted images of the optic nerve usually show the hyperintense lesion in optic neuritis and gadolinium enhancement is seen in the acute attack. Quantifying atrophy of the optic nerve using MRI gives an indication of the degree of axonal loss. Magnetization transfer ratio (MTR) of the optic nerve provides an indication of myelination. Diffusion tensor imaging (DTI) of the optic nerve and optic radiation provide information about the integrity of the visual white matter tracts. Functional MRI following visual stimulation is used to assess the contribution of cortical reorganisation to functional recovery following optic neuritis. Investigations including logMAR visual acuity, Sloan contrast acuity, Farnsworth- Munsell 100-hue colour vision tests and Humphrey perimetry provide detailed quantitative information on different aspects of visual function. Visual evoked potentials identify conduction block or delay reflecting demyelination. These collective investigative methods have advanced knowledge of pathophysiological mechanisms in MS and optic neuritis. Relevant ongoing studies and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (1991) The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Optic Neuritis Study Group. Arch Ophthalmol 109:1673–1678

  2. Allen IV (1981) The pathology of multiple sclerosis – fact, fiction and hypothesis. Neuropathol Appl Neurobiol 7:169–182

    Article  PubMed  CAS  Google Scholar 

  3. Audoin B, Fernando KT, Swanton JK, Thompson AJ, Plant GT, Miller DH (2006) Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain 129:1031–1039

    Article  PubMed  Google Scholar 

  4. Audoin B, Ranjeva JP, Au Duong MV, Ibarrola D, Malikova I, Confort-Gouny S, Soulier E, Viout P, li-Cherif A, Pelletier J, Cozzone PJ (2004) Voxel-based analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis. J Magn Reson Imaging 20:765–771

    Article  PubMed  Google Scholar 

  5. Baier ML, Cutter GR, Rudick RA, Miller D, Cohen JA, Weinstock-Guttman B, Mass M, Balcer LJ (2005) Lowcontrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology 64:992–995

    PubMed  CAS  Google Scholar 

  6. Balcer LJ (2001) Clinical outcome measures for research in multiple sclerosis. J Neuroophthalmol 21:296–301

    PubMed  CAS  Google Scholar 

  7. Balcer LJ, Baier ML, Pelak VS, Fox RJ, Shuwairi S, Galetta SL, Cutter GR, Maguire MG (2000) New low-contrast vision charts: reliability and test characteristics in patients with multiple sclerosis. Mult Scler 6:163–171

    PubMed  CAS  Google Scholar 

  8. Barker GJ (2001) Diffusion-weighted imaging of the spinal cord and optic nerve. J Neurol Sci 186(Suppl 1):S45–S49

    Article  PubMed  Google Scholar 

  9. Beck RW, Trobe JD, Moke PS, Gal RL, Xing D, Bhatti MT, Brodsky MC, Buckley EG, Chrousos GA, Corbett J, Eggenberger E, Goodwin JA, Katz B, Kaufman DI, Keltner JL, Kupersmith MJ, Miller NR, Nazarian S, Orengo- Nania S, Savino PJ, Shults WT, Smith CH, Wall M (2003) High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol 121:944–949

    Article  PubMed  Google Scholar 

  10. Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, Sample PA, Weinreb RN (2006) Structure- function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47:2889–2895

    Article  PubMed  Google Scholar 

  11. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–164

    Article  PubMed  Google Scholar 

  12. Chen J, Lee L (2007) Clinical applications and new developments of optical coherence tomography: an evidencebased review. Clin Exp Optom 90:317–335

    Article  PubMed  Google Scholar 

  13. Ciccarelli O, Toosy AT, Hickman SJ, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2005) Optic radiation changes after optic neuritis detected by tractography-based group mapping. Hum Brain Mapp 25:308–316

    Article  PubMed  Google Scholar 

  14. Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, Freedman MS, Zackon DH, Kardon RH (2006) Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 59:963–969

    Article  PubMed  Google Scholar 

  15. De SN, Filippi M, Miller D, Pouwels PJ, Rovira A, Gass A, Enzinger C, Matthews PM, Arnold DL (2007) Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 69:1942–1952

    Article  Google Scholar 

  16. Della MG, Bacchetti S, Zeppieri M, Brusini P, Cutuli D, Gigli GL (2007) Nerve fibre layer analysis with GDx with a variable corneal compensator in patients with multiple sclerosis. Ophthalmologica 221:186–189

    Article  Google Scholar 

  17. Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    PubMed  CAS  Google Scholar 

  18. Elbol P, Work K (1990) Retinal nerve fiber layer in multiple sclerosis. Acta Ophthalmol (Copenh) 68:481–486

    Article  CAS  Google Scholar 

  19. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2001) Sizeselective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124:1813–1820

    Article  PubMed  CAS  Google Scholar 

  20. Fang JP, Lin RH, Donahue SP (1999) Recovery of visual field function in the optic neuritis treatment trial. Am J Ophthalmol 128:566–572

    Article  PubMed  CAS  Google Scholar 

  21. Faro SH, Mohamed FB, Tracy JI, Elfont RM, Pinus AB, Lublin FD, Koenigsberg RA, Chen CY, Tsai FY (2002) Quantitative functional MR imaging of the visual cortex at 1.5 T as a function of luminance contrast in healthy volunteers and patients with multiple sclerosis. AJNR Am J Neuroradiol 23:59–65

    PubMed  Google Scholar 

  22. Fernando KT, Tozer DJ, Miszkiel KA, Gordon RM, Swanton JK, Dalton CM, Barker GJ, Plant GT, Thompson AJ, Miller DH (2005) Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 128:2911–2925

    Article  PubMed  CAS  Google Scholar 

  23. Ferris FL III, Kassoff A, Bresnick GH, Bailey I (1982) New visual acuity charts for clinical research. Am J Ophthalmol 94:91–96

    PubMed  Google Scholar 

  24. Filippi M, Tortorella C, Rovaris M, Bozzali M, Possa F, Sormani MP, Iannucci G, Comi G (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68:157–161

    Article  PubMed  CAS  Google Scholar 

  25. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, Baier ML, Frohman EM, Winslow H, Frohman TC, Calabresi PA, Maguire MG, Cutter GR, Balcer LJ (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113:324–332

    Article  PubMed  Google Scholar 

  26. Fraser C, Klistorner A, Graham S, Garrick R, Billson F, Grigg J (2006) Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch Neurol 63:847–850

    Article  PubMed  Google Scholar 

  27. Gareau PJ, Gati JS, Menon RS, Lee D, Rice G, Mitchell JR, Mandelfino P, Karlik SJ (1999) Reduced visual evoked responses in multiple sclerosis patients with optic neuritis: comparison of functional magnetic resonance imaging and visual evoked potentials. Mult Scler 5:161–164

    PubMed  CAS  Google Scholar 

  28. Gass A, Barker GJ, Kidd D, Thorpe JW, MacManus D, Brennan A, Tofts PS, Thompson AJ, McDonald WI, Miller DH (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36:62–67

    Article  PubMed  CAS  Google Scholar 

  29. Gass A, Moseley IF, Barker GJ, Jones S, MacManus D, McDonald WI, Miller DH (1996) Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI. Neuroradiology 38:317–321

    Article  PubMed  CAS  Google Scholar 

  30. Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, Frohman EM, Cutter G, Calabresi PA (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69:1603–1609

    Article  PubMed  CAS  Google Scholar 

  31. Grazioli E, Zivadinov R, Weinstock- Guttman B, Lincoff N, Baier M, Wong JR, Hussein S, Cox JL, Hojnacki D, Ramanathan M (2008) Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 268(1–2):12–17

    Article  PubMed  Google Scholar 

  32. Grover LK, Hood DC, Ghadiali Q, Grippo TM, Wenick AS, Greenstein VC, Behrens MM, Odel JG (2008) A comparison of multifocal and conventional visual evoked potential techniques in patients with optic neuritis/multiple sclerosis. Doc Ophthalmol 117(2):121–128

    Article  PubMed  Google Scholar 

  33. Guy J, Mao J, Bidgood WD Jr, Mancuso A, Quisling RG (1992) Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging. Ophthalmology 99:713–719

    PubMed  CAS  Google Scholar 

  34. Halliday AM, McDonald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985

    Article  PubMed  CAS  Google Scholar 

  35. Halliday AM, McDonald WI, Mushin J (1973) Visual evoked response in diagnosis of multiple sclerosis. Br Med J 4:661–664

    Article  PubMed  CAS  Google Scholar 

  36. Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287

    PubMed  Google Scholar 

  37. Hickman SJ, Brex PA, Brierley CM, Silver NC, Barker GJ, Scolding NJ, Compston DA, Moseley IF, Plant GT, Miller DH (2001) Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence. Neuroradiology 43:123–128

    Article  PubMed  CAS  Google Scholar 

  38. Hickman SJ, Brierley CM, Brex PA, MacManus DG, Scolding NJ, Compston DA, Miller DH (2002) Continuing optic nerve atrophy following optic neuritis: a serial MRI study. Mult Scler 8:339–342

    Article  PubMed  CAS  Google Scholar 

  39. Hickman SJ, Toosy AT, Jones SJ, Altmann DR, Miszkiel KA, MacManus DG, Barker GJ, Plant GT, Thompson AJ, Miller DH (2004) Serial magnetization transfer imaging in acute optic neuritis. Brain 127:692–700

    Article  PubMed  CAS  Google Scholar 

  40. Hickman SJ, Toosy AT, Jones SJ, Altmann DR, Miszkiel KA, MacManus DG, Barker GJ, Plant GT, Thompson AJ, Miller DH (2004) A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 127:2498–2505

    Article  PubMed  Google Scholar 

  41. Hickman SJ, Toosy AT, Miszkiel KA, Jones SJ, Altmann DR, MacManus DG, Plant GT, Thompson AJ, Miller DH (2004) Visual recovery following acute optic neuritis – a clinical, electrophysiological and magnetic resonance imaging study. J Neurol 251:996–1005

    Article  PubMed  Google Scholar 

  42. Hickman SJ, Wheeler-Kingshott CA, Jones SJ, Miszkiel KA, Barker GJ, Plant GT, Miller DH (2005) Optic nerve diffusion measurement from diffusion- weighted imaging in optic neuritis. AJNR Am J Neuroradiol 26:951–956

    PubMed  Google Scholar 

  43. Hood DC, Odel JG, Winn BJ (2003) The multifocal visual evoked potential. J Neuroophthalmol 23:279–289

    PubMed  Google Scholar 

  44. Hornabrook RS, Miller DH, Newton MR, MacManus DG, du Boulay GH, Halliday AM, McDonald WI (1992) Frequent involvement of the optic radiation in patients with acute isolated optic neuritis. Neurology 42:77–79

    Article  PubMed  CAS  Google Scholar 

  45. Hoyt WF, Frisen L, Newman NM (1973) Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol 12:814–829

    PubMed  CAS  Google Scholar 

  46. Iannucci G, Tortorella C, Rovaris M, Sormani MP, Comi G, Filippi M (2009) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 21:1034–1038

    Google Scholar 

  47. Iester M, Cioli F, Uccelli A, Papadia M, Bandini F, Mancardi GL, Calabria GA (2007) Retinal nerve fibre layer measurements and optic nerve head analysis in multiple sclerosis patients. Eye 23(2):407–412

    Article  PubMed  Google Scholar 

  48. Ikuta F, Zimmerman HM (1976) Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 26:26–28

    PubMed  CAS  Google Scholar 

  49. Inglese M, Ghezzi A, Bianchi S, Gerevini S, Sormani MP, Martinelli V, Comi G, Filippi M (2002) Irreversible disability and tissue loss in multiple sclerosis: a conventional and magnetization transfer magnetic resonance imaging study of the optic nerves. Arch Neurol 59:250–255

    Article  PubMed  Google Scholar 

  50. Iwasawa T, Matoba H, Ogi A, Kurihara H, Saito K, Yoshida T, Matsubara S, Nozaki A (1997) Diffusion-weighted imaging of the human optic nerve: a new approach to evaluate optic neuritis in multiple sclerosis. Magn Reson Med 38:484–491

    Article  PubMed  CAS  Google Scholar 

  51. Jackson A, Sheppard S, Laitt RD, Kassner A, Moriarty D (1998) Optic neuritis: MR imaging with combined fat- and water-suppression techniques. Radiology 206:57–63

    PubMed  CAS  Google Scholar 

  52. Johnson G, Miller DH, MacManus D, Tofts PS, Barnes D, du Boulay EP, McDonald WI (1987) STIR sequences in NMR imaging of the optic nerve. Neuroradiology 29:238–245

    Article  PubMed  CAS  Google Scholar 

  53. Karim S, Clark RA, Poukens V, Demer JL (2004) Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest Ophthalmol Vis Sci 45:1047–1051

    Article  PubMed  Google Scholar 

  54. Keltner JL, Johnson CA, Spurr JO, Beck RW (1999) Comparison of central and peripheral visual field properties in the optic neuritis treatment trial. Am J Ophthalmol 128:543–553

    Article  PubMed  CAS  Google Scholar 

  55. Kerrison JB, Flynn T, Green WR (1994) Retinal pathologic changes in multiple sclerosis. Retina 14:445–451

    Article  PubMed  CAS  Google Scholar 

  56. Klistorner A, Fraser C, Garrick R, Graham S, Arvind H (2008) Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol 116:19–27

    Article  PubMed  Google Scholar 

  57. Kolappan M, Connick P, Plant GT, Compston DASC, Thompson AJ, Miller DH, Chandran SC (2008) Poster presented in World Congress of Treatment and Research in MS (WCTRIMS) 2008 in Montreal, Quebec, Canada. “Optic neuritis as a sentinel lesion to study neuroprotection and repair in a trial of autologous mesenchymal stem cells in multiple sclerosis”. Mult Scler J (Suppl) S112:284

    Google Scholar 

  58. Korsholm K, Madsen KH, Frederiksen JL, Skimminge A, Lund TE (2007) Recovery from optic neuritis: an ROIbased analysis of LGN and visual cortical areas. Brain 130:1244–1253

    Article  PubMed  Google Scholar 

  59. Kupersmith MJ, Alban T, Zeiffer B, Lefton D (2002) Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain 125:812–822

    Article  PubMed  Google Scholar 

  60. Langkilde AR, Frederiksen JL, Rostrup E, Larsson HB (2002) Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis. Eur J Neurol 9:277–286

    Article  PubMed  CAS  Google Scholar 

  61. Levin N, Orlov T, Dotan S, Zohary E (2006) Normal and abnormal fMRI activation patterns in the visual cortex after recovery from optic neuritis. Neuroimage 33:1161–1168

    Article  PubMed  Google Scholar 

  62. Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(Pt 3):701–708

    Article  PubMed  Google Scholar 

  63. Lumsden CE (1971) The immunogenesis of the multiple sclerosis plaque. Brain Res 28:365–390

    Article  PubMed  CAS  Google Scholar 

  64. MacFadyen DJ, Drance SM, Douglas GR, Airaksinen PJ, Mawson DK, Paty DW (1988) The retinal nerve fiber layer, neuroretinal rim area, and visual evoked potentials in MS. Neurology 38:1353–1358

    PubMed  CAS  Google Scholar 

  65. Matthews WB, Small DG, Small M, Pountney E (1977) Pattern reversal evoked visual potential in the diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatry 40:1009–1014

    Article  PubMed  CAS  Google Scholar 

  66. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695

    Article  PubMed  Google Scholar 

  67. Miller DH, Newton MR, van der Poel JC, du Boulay EP, Halliday AM, Kendall BE, Johnson G, MacManus DG, Moseley IF, McDonald WI (1988) Magnetic resonance imaging of the optic nerve in optic neuritis. Neurology 38:175–179

    PubMed  CAS  Google Scholar 

  68. Miller DH, Ormerod IE, McDonald WI, MacManus DG, Kendall BE, Kingsley DP, Moseley IF (1988) The early risk of multiple sclerosis after optic neuritis. J Neurol Neurosurg Psychiatry 51:1569–1571

    Article  PubMed  CAS  Google Scholar 

  69. Moro SI, Rodriguez-Carmona ML, Frost EC, Plant GT, Barbur JL (2007) Recovery of vision and pupil responses in optic neuritis and multiple sclerosis. Ophthalmic Physiol Opt 27:451–460

    Article  PubMed  CAS  Google Scholar 

  70. Mullen KT, Plant GT (1986) Colour and luminance vision in human optic neuritis. Brain 109(Pt 1):1–13

    Article  PubMed  Google Scholar 

  71. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  72. Oppenheimer DR (1978) The cervical cord in multiple sclerosis. Neuropathol Appl Neurobiol 4:151–162

    Article  PubMed  CAS  Google Scholar 

  73. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, Bucci MG, Pierelli F (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    PubMed  CAS  Google Scholar 

  74. Parker GJ, Stephan KE, Barker GJ, Rowe JB, MacManus DG, Wheeler- Kingshott CA, Ciccarelli O, Passingham RE, Spinks RL, Lemon RN, Turner R (2002) Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 15:797–809

    Article  PubMed  Google Scholar 

  75. Plant GT (1983) Transient visually evoked potentials to sinusoidal gratings in optic neuritis. J Neurol Neurosurg Psychiatry 46:1125–1133

    Article  PubMed  CAS  Google Scholar 

  76. Plant GT, Hess RF (1987) Regional threshold contrast sensitivity within the central visual field in optic neuritis. Brain 110(Pt 2):489–515

    Article  PubMed  Google Scholar 

  77. Plant GT, Hess RF (1985) Temporal frequency discrimination in optic neuritis and multiple sclerosis. Brain 108(Pt 3):647–676

    Article  PubMed  Google Scholar 

  78. Plant GT, Kermode AG, Turano G, Moseley IF, Miller DH, MacManus DG, Halliday AM, McDonald WI (1992) Symptomatic retrochiasmal lesions in multiple sclerosis: clinical features, visual evoked potentials, and magnetic resonance imaging. Neurology 42:68–76

    PubMed  CAS  Google Scholar 

  79. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  80. Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA (2007) Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69:2085–2092

    Article  PubMed  CAS  Google Scholar 

  81. Quigley HA, Addicks EM (1982) Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 100:807–814

    PubMed  CAS  Google Scholar 

  82. Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41S

    Article  PubMed  Google Scholar 

  83. Rombouts SA, Lazeron RH, Scheltens P, Uitdehaag BM, Sprenger M, Valk J, Barkhof F (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899

    PubMed  CAS  Google Scholar 

  84. Rosenblatt MA, Behrens MM, Zweifach PH, Forman S, Odel JG, Duncan CM, Gross SA (1987) Magnetic resonance imaging of optic tract involvement in multiple sclerosis. Am J Ophthalmol 104:74–79

    PubMed  CAS  Google Scholar 

  85. Russ MO, Cleff U, Lanfermann H, Schalnus R, Enzensberger W, Kleinschmidt A (2002) Functional magnetic resonance imaging in acute unilateral optic neuritis. J Neuroimaging 12:339–350

    PubMed  Google Scholar 

  86. Saito H, Tomidokoro A, Sugimoto E, Aihara M, Tomita G, Fujie K, Wakakura M, Araie M (2006) Optic disc topography and peripapillary retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy and openangle glaucoma. Ophthalmology 113:1340–1344

    Article  PubMed  Google Scholar 

  87. Schmid R, Wilhelm B, Wilhelm H (2000) Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefes Arch Clin Exp Ophthalmol 238:123–128

    Article  PubMed  CAS  Google Scholar 

  88. Schneck ME, Haegerstrom-Portnoy G (1997) Color vision defect type and spatial vision in the optic neuritis treatment trial. Invest Ophthalmol Vis Sci 38:2278–2289

    PubMed  CAS  Google Scholar 

  89. Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, Garcia-Layana A, Bejarano B, Villoslada P (2007) Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 68:1488–1494

    Article  PubMed  Google Scholar 

  90. Simon JH, Kinkel RP, Jacobs L, Bub L, Simonian N (2000) A Wallerian degeneration pattern in patients at risk for MS. Neurology 54:1155–1160

    PubMed  CAS  Google Scholar 

  91. Steel DH, Waldock A (1998) Measurement of the retinal nerve fibre layer with scanning laser polarimetry in patients with previous demyelinating optic neuritis. J Neurol Neurosurg Psychiatry 64:505–509

    Article  PubMed  CAS  Google Scholar 

  92. Thorpe JW, Barker GJ, Jones SJ, Moseley I, Losseff N, MacManus DG, Webb S, Mortimer C, Plummer DL, Tofts PS (1995) Magnetisation transfer ratios and transverse magnetisation decay curves in optic neuritis: correlation with clinical findings and electrophysiology. J Neurol Neurosurg Psychiatry 59:487–492

    Article  PubMed  CAS  Google Scholar 

  93. Tien RD (1992) Fat-suppression MR imaging in neuroradiology: techniques and clinical application. AJR Am J Roentgenol 158:369–379

    PubMed  CAS  Google Scholar 

  94. Tien RD, Hesselink JR, Szumowski J (1991) MR fat suppression combined with Gd-DTPA enhancement in optic neuritis and perineuritis. J Comput Assist Tomogr 15:223–227

    Article  PubMed  CAS  Google Scholar 

  95. Tomiak MM, Rosenblum JD, Prager JM, Metz CE (1994) Magnetization transfer: a potential method to determine the age of multiple sclerosis lesions. AJNR Am J Neuroradiol 15:1569–1574

    PubMed  CAS  Google Scholar 

  96. Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2004) Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 21:1452–1463

    Article  PubMed  Google Scholar 

  97. Toosy AT, Hickman SJ, Miszkiel KA, Jones SJ, Plant GT, Altmann DR, Barker GJ, Miller DH, Thompson AJ (2005) Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 57:622–633

    Article  PubMed  Google Scholar 

  98. Toosy AT, Werring DJ, Bullmore ET, Plant GT, Barker GJ, Miller DH, Thompson AJ (2002) Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neurosci Lett 330:255–259

    Article  PubMed  CAS  Google Scholar 

  99. Toussaint D, Perier O, Verstappen A, Bervoets S (1983) Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol 3:211–220

    PubMed  CAS  Google Scholar 

  100. Traboulsee A, Dehmeshki J, Brex PA, Dalton CM, Chard D, Barker GJ, Plant GT, Miller DH (2002) Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 59:126–128

    PubMed  CAS  Google Scholar 

  101. Trapp BD, Bo L, Mork S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98:49–56

    Article  PubMed  CAS  Google Scholar 

  102. Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391

    Article  PubMed  Google Scholar 

  103. Trip SA, Schlottmann PG, Jones SJ, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH (2006) Quantification of optic nerve head topography in optic neuritis: a pilot study. Br J Ophthalmol 90:1128–1131

    Article  PubMed  CAS  Google Scholar 

  104. Trip SA, Schlottmann PG, Jones SJ, Li WY, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH (2006) Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 31:286–293

    Article  PubMed  Google Scholar 

  105. Trip SA, Schlottmann PG, Jones SJ, Li WY, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH (2007) Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Mult Scler 13:875–879

    Article  PubMed  CAS  Google Scholar 

  106. Trip SA, Wheeler-Kingshott C, Jones SJ, Li WY, Barker GJ, Thompson AJ, Plant GT, Miller DH (2006) Optic nerve diffusion tensor imaging in optic neuritis. Neuroimage 30:498–505

    Article  PubMed  Google Scholar 

  107. Ueki S, Fujii Y, Matsuzawa H, Takagi M, Abe H, Kwee IL, Nakada T (2006) Assessment of axonal degeneration along the human visual pathway using diffusion trace analysis. Am J Ophthalmol 142:591–596

    Article  PubMed  Google Scholar 

  108. Weigel M, Lagreze WA, Lazzaro A, Hennig J, Bley TA (2006) Fast and quantitative high-resolution magnetic resonance imaging of the optic nerve at 3.0 tesla. Invest Radiol 41:83–86

    Article  PubMed  Google Scholar 

  109. Werring DJ, Bullmore ET, Toosy AT, Miller DH, Barker GJ, MacManus DG, Brammer MJ, Giampietro VP, Brusa A, Brex PA, Moseley IF, Plant GT, McDonald WI, Thompson AJ (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68:441–449

    Article  PubMed  CAS  Google Scholar 

  110. Wheeler-Kingshott CA, Parker GJ, Symms MR, Hickman SJ, Tofts PS, Miller DH, Barker GJ (2002) ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn Reson Med 47:24–31

    Article  PubMed  Google Scholar 

  111. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    Article  PubMed  CAS  Google Scholar 

  112. Wu GF, Schwartz ED, Lei T, Souza A, Mishra S, Jacobs DA, Markowitz CE, Galetta SL, Nano-Schiavi ML, Desiderio LM, Cutter GR, Calabresi PA, Udupa JK, Balcer LJ (2007) Relation of vision to global and regional brain MRI in multiple sclerosis. Neurology 69:2128–2135

    Article  PubMed  CAS  Google Scholar 

  113. Youl BD, Turano G, Miller DH, Towell AD, MacManus DG, Moore SG, Jones SJ, Barrett G, Kendall BE, Moseley IF (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114(Pt 6):2437–2450

    Article  PubMed  Google Scholar 

  114. Youl BD, Turano G, Towell AD, Barrett G, MacManus DG, Moore SG, Miller DH, Jones SJ, du Boulay EP, Kendall BE, Moseley IF, McDonald WI (1996) Optic neuritis: swelling and atrophy. Electroencephalogr Clin Neurophysiol Suppl 46:173–179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kolappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolappan, M., Henderson, A.P.D., Jenkins, T.M. et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 256, 305–319 (2009). https://doi.org/10.1007/s00415-009-0123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-0123-z

Key words

Navigation