Skip to main content
Log in

Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington’s disease

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

To establish differences in basal ganglia and thalamic volume between preclinical carriers and non-carriers of the Huntington’s disease (HD) gene and to link the volume to motor, cognitive and behavioural characteristics in carriers.

Methods

Sixteen HD gene carriers without overt clinical motor signs and 14 non-gene carriers underwent clinical evaluation and a MRI scan. Volumes of the caudate nucleus, putamen, gobus pallidus and thalamus were measured using T1-weighted MR images. Motor, cognitive and behavioural functioning was assessed using the Unified Huntington’s Disease Rating Scale (UHDRS), cognitive testing and the Beck Depression Inventory (BDI-II).

Results

Volumes of the caudate nucleus, putamen and globus pallidus were significantly smaller in carriers than in non-carriers while no differences between groups were found on clinical evaluation. In gene carriers smaller globus pallidus volume was associated with more motor abnormalities. A smaller putamen volume correlated significantly with worse psychomotor function on the Symbol Digit Modalities Task and the Trail Making Test B.

Conclusions

In line with previous research we demonstrated that basal ganglia abnormalities precede overt disease manifestation of HD. Besides we showed that smaller basal ganglia volumes are related to subtle motor abnormalities and worse psychomotor performance in gene carriers without clinical diagnosis. Motor and psychomotor measures may be suitable clinical markers in future neuroprotective trials when combined with volumetric imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosas HD, Koroshetz WJ, Chen YI, et al. (2003) Evidence for more widespread cerebral pathology in early HD. An MRI-based morphometric analysis. Neurology 60:1615–1620

    CAS  PubMed  Google Scholar 

  2. Bates G, Harper PS, Jones L (2002) Huntington’s disease. Third ed. Oxford University Press

  3. Kirkwood SC, Siemers E, Stout JC, et al. (1999) Longitudinal cognitive and motor changes among presymptomatic Huntington disease gene carriers. Arch Neurol 56:563–568

    Article  CAS  PubMed  Google Scholar 

  4. Witjes-Ane MNW, Vegter-van der Vlis M, van Vugt JPP, et al. (2003) Cognitive and motor functioning in gene carriers for Huntington’s disease: A baseline study. J Neuropsychiatry and Clin Neurosci 15:7–16

    Google Scholar 

  5. Snowden JS, Craufurd D, Thompson J, Neary D (2002) Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neuropsychol 24:133–145

    Article  CAS  PubMed  Google Scholar 

  6. Witjes-Ane MNW, Zwinderman AH, Tibben A, van Ommen GJB, Roos RAC (2002) Behavioural complaints in participants who underwent predictive testing for Huntington’s disease. J Med Genet 39:857–862

    Article  PubMed  Google Scholar 

  7. Kirkwood SC, Siemers E, Viken R, et al. (2002) Longitudinal personality changes among presymptomatic Huntington disease gene carriers Neuropsychiatry Neuropsychology and Behavioral Neurology 15:192–197

    Google Scholar 

  8. Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J (1996) Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 53:1293–1296

    CAS  PubMed  Google Scholar 

  9. Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ (1994) Reduced Basal Ganglia Volume Associated with the Gene for Huntington’s Disease in Asymptomatic At-Risk Persons. Neurology 44:823–828

    CAS  PubMed  Google Scholar 

  10. Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 122:1667–1678

    Article  PubMed  Google Scholar 

  11. Aylward EH, Sparks BF, Field KM, et al. (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72

    CAS  PubMed  Google Scholar 

  12. Paulsen JS, Magnotta VA, Mikos AE, et al.(2006) Brain structure in preclinical Huntington’s disease. Biol Psychiatry 59:57–63

    Article  CAS  PubMed  Google Scholar 

  13. Harris GJ, Aylward EH, Peyser CE, et al. (1996) Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of basal ganglia in Huntington’s disease. Arch Neurol 53:316–324

    CAS  PubMed  Google Scholar 

  14. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29

    PubMed  Google Scholar 

  15. Peinemann A, Schuller S, Pohl C, Jahn T, Weindl A, Kassubek J (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239:11–19

    Article  PubMed  Google Scholar 

  16. Starkstein SE, Brandt J, Bylsma F, Peyser C, Folstein M, Folstein SE (1992) Neuropsychological Correlates of Brain Atrophy in Huntington’s Disease. A Magnetic Resonance Imaging Study. Neuroradiology 34:487–489

    Article  CAS  PubMed  Google Scholar 

  17. Bamford KA, Caine ED, Kido DK, Cox C, Shoulson I (1995) A Prospective Evaluation of Cognitive Decline in Early Huntington’s Disease. Functional and Radiographic Correlates. Neurology 45:1867–1873

    CAS  PubMed  Google Scholar 

  18. Kassubek J, Juengling FD, Ecker D, Landwehrmeyer GB (2005) Thalamic atrophy in Huntington’s disease covaries with cognitive performance: A morphometric MRI analysis. Cereb Cortex 15:846–853

    Article  PubMed  Google Scholar 

  19. Campodonico JR, Aylward E, Codori AM, et al.(1998) When does Huntington’s disease begin? J Intern Neuropsychol Soc 4:467–473

    CAS  Google Scholar 

  20. Paulsen JS, Hayden M, Stout JC, et al. (2006) Preparing for preventive clinical trials – The predict-HD study. Arch Neurol 63(6):883–890

    Article  PubMed  Google Scholar 

  21. Solomon AC, Stout JC, Johnson SA, et al. (2007) Verbal episodic memory declines prior to diagnosis in Huntington’s disease. Neuropsychologia 45:1767–1776

    Article  PubMed  Google Scholar 

  22. American College of Medical Genetics/American Society of Human Genetics Huntington Disease Genetic Testing Working Group (1998) ACMG/ASHG statement Laboratory guidelines for Huntington disease genetic testing. Am J Hum Genet 62:1243–1247

    Google Scholar 

  23. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR on behalf of an International Huntington’s Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277

    Article  CAS  PubMed  Google Scholar 

  24. Kieburtz K, Penney JB, Como P, et al. (1996) Unified Huntington’s disease rating scale: Reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR (1975) ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  26. Wechsler DA (1945) A standardized memory scale for clinical use. J Psychology 19:87–95

    Google Scholar 

  27. Brandt J (1991) The Hopkins Verbal Learning Test: development of a new memory test with six equivalent forms. Clin Neuropsychol 5:125–142

    Article  Google Scholar 

  28. Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  29. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  30. Benton AL, Hamsher.KdS (1976) Multilingual Aphasia Examination. Iowa city: University of Iowa Press

  31. Smith A (1968) The Symbol Digit Modalities Test: a neuropsychologic test for economic screening of learning and other cerebral disorders. Learn Disord 3:83–91

    Google Scholar 

  32. Kaplan EF, Goodglass H, Weintraub S (1978) The Boston Naming Test. Boston: Kaplan and Goodglass

  33. Vienna Reaction Unit software (1992) http://www.schuhfried.co.at/e/wts/hard5.htm

  34. Beery KE (1997) Developmental Test of Visual-Motor Integration (VMI). 4 ed. Parsippany: Modern Curriculum Press

  35. Beck AT, Steer RA, Garbin MG (1988) Psychometric Properties of the Beck Depression Inventory – 25 Years of Evaluation. Clin Psychol Rev 8:77–100

    Article  Google Scholar 

  36. Smith SM, Zhang YY, Jenkinson M, et al. (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489

    Article  PubMed  Google Scholar 

  37. Thieben MJ, Duggins AJ, Good CD, et al. (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  CAS  PubMed  Google Scholar 

  38. Starkstein SE, Brandt J, Folstein S, et al. (1988) Neuropsychological and Neuroradiological Correlates in Huntington’s Disease. J Neurol Neurosurg Psychiatry 51:1259–1263

    Article  CAS  PubMed  Google Scholar 

  39. Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859–876

    Article  PubMed  Google Scholar 

  40. Joel D (2001) Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Mov Disord 16:407–423

    Article  CAS  PubMed  Google Scholar 

  41. Ho AK, Sahakian BJ, Brown RG, et al. (2003) Profile of cognitive progression in early Huntington’s disease. Neurology 61:1702–1706

    CAS  PubMed  Google Scholar 

  42. Reading SAJ, Yassa MA, Bakker A, et al. (2005) Regional white matter change in pre-symptomatic Huntington’s disease: A diffusion tensor imaging study. Psychiatry Research Neuroimaging 140:55–62

    Article  Google Scholar 

  43. Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline K. Jurgens MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurgens, C.K., van de Wiel, L., van Es, A.C.G.M. et al. Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington’s disease. J Neurol 255, 1785–1791 (2008). https://doi.org/10.1007/s00415-008-0050-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-0050-4

Key words

Navigation