Skip to main content

The Complexity of Clinical Huntington’s Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-57193-5_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AchE:

Acetylcholinesterase

CB:

Calbindin

CC:

Corpus callosum

CR:

Calretinin

DBS:

Deep brain stimulation

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

GeM-HD:

Genetic Modifiers of Huntington’s disease

GP:

Globus pallidus

GPe:

Globus pallidus external segment

GPi:

Globus pallidus internal segment

HD:

Huntington’s disease

LAMP:

Limbic system-associated membrane protein

MD:

Mean diffusivity

MRI:

Magentic resonance imaging

MSNs:

Medium-sized spiny projection neurons

NOS:

Nitric oxide synthase

NPY:

Neuropeptide Y

preHD:

Pre-symptomatic HD

PV:

Parvalbumin

SNP:

Single nucleotide polymorphism

SNr:

Substantia nigra pars reticulata

VBM:

Voxel-based morphometry

References

  1. Harper PS (1992) The epidemiology of Huntington’s disease. Hum Genet 89(4):365–376

    Google Scholar 

  2. Huntington G (2003) On chorea (reprinted from the medical and surgical reporter: a weekly journal, vol 26, no. 15, April 13, 1872, pp. 317–321). J Neuropsychiatry Clin Neurosci 15(1):109–112

    Article  PubMed  Google Scholar 

  3. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–238

    Article  CAS  PubMed  Google Scholar 

  4. Snell RG, Lazarou LP, Youngman S, Quarrell OW, Wasmuth JJ, Shaw DJ et al (1989) Linkage disequilibrium in Huntington’s disease: an improved localisation for the gene. J Med Genet 26(11):673–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snell RG, Thompson LM, Tagle DA, Holloway TL, Barnes G, Harley HG et al (1992) A recombination event that redefines the Huntington disease region. AM J Hum Genet 51(2):357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Macdonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72(6):971–983

    Google Scholar 

  7. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4(4):398–403

    Google Scholar 

  8. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M et al (1993) Trinucleotide repeat length instability and age-of-onset in Huntingtons disease. Nat Genet 4(4):387–392

    Google Scholar 

  9. Snell RG, Macmillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet 4(4):393–397

    Google Scholar 

  10. Myers RH, Macdonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SAM et al (1993) De-novo expansion of a (CAG)(N) repeat in sporadic Huntingtons-disease. Nat Genet 5(2):168–173

    Google Scholar 

  11. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ et al (1996) Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 59(1):16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gusella JF, MacDonald ME (2006) Huntington’s disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci 31(9):533–540

    Google Scholar 

  13. Djousse L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C et al (2003) Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 119A(3):279–282

    Article  CAS  PubMed  Google Scholar 

  14. Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78(10):690–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keum JW, Shin A, Gillis T, Mysore JS, Abu Elneel K, Lucente D et al (2016) The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet 98(2):287–298

    Google Scholar 

  16. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM et al (1995) Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269(5222):407–410

    Google Scholar 

  17. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL et al (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17(4):404–410

    Article  CAS  PubMed  Google Scholar 

  18. Brook JD, Mccurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H et al (1992) Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68(4):799–808

    Google Scholar 

  19. Knight SJL, Flannery AV, Hirst MC, Campbell L, Christodoulou Z, Phelps SR et al (1993) Trinucleotide repeat amplification and Hypermethylation of a CpG Island in FRAXE mental retardation. Cell 74(1):127–134

    Google Scholar 

  20. Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E et al (1991) Mapping of DNA instability at the fragile-X to a trinucleotide repeat sequence p(CCG)n. Science 252(5013):1711–1714

    Google Scholar 

  21. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  Google Scholar 

  22. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6(1):9–13

    Google Scholar 

  23. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type-1. Nat Genet 4(3):221–226

    Google Scholar 

  24. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, LopesCendes I et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276

    Article  CAS  PubMed  Google Scholar 

  25. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8(3):221–228

    Google Scholar 

  26. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha(1A)-voltage-dependent calcium channel. Nat Genet 15(1):62–69

    Article  CAS  PubMed  Google Scholar 

  27. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G et al (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378(6555):403–406

    Google Scholar 

  28. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M et al (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8(11):2047–2053

    Article  CAS  PubMed  Google Scholar 

  29. Lee JM, Gillis T, Mysore JS, Ramos EM, Myers RH, Hayden MR et al (2012) Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region. Am J Hum Genet 90(3):434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H et al (2009) CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 84(3):351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almqvist EW, Elterman DS, MacLeod PM, Hayden MR (2001) High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia. Clin Genet 60(3):198–205

    Article  CAS  PubMed  Google Scholar 

  32. Andrew SE, Goldberg YP, Hayden MR (1997) Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum Mol Genet 6(12):2005–2010

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg YP, Kremer B, Andrew SE, Theilmann J, Graham RK, Squitieri F et al (1993) Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nat Genet 5(2):174–179

    Google Scholar 

  34. Falush D, Almqvist EW, Brinkmann RR, Iwasa Y, Hayden MR (2001) Measurement of mutational flow implies both a high new-mutation rate for Huntington disease and substantial underascertainment of late-onset cases. Am J Hum Genet 68(2):373–385

    Article  CAS  PubMed  Google Scholar 

  35. Lee JM, Kim KH, Shin A, Chao MJ, Abu Elneel K, Gillis T et al (2015) Sequence-level analysis of the major European Huntington disease haplotype. Am J Hum Genet 97(3):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li JL, Hayden M, Almqvist EW, Durr A, Dod C, Morrison PJ et al (2003) A genome scan for modifiers of age at onset in Huntington’s disease: the HD MAPS study. Am J Hum Genet 73(5):492

    Google Scholar 

  37. Gusella JF, MacDonald ME, Lee JM (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29(11):1359–1365

    Google Scholar 

  38. Li JL, Hayden MR, Warby SC, Durr A, Morrison PJ, Nance M et al (2006) Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23-24: the HD MAPS study. BMC Med Genet 7:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gayán J, Brocklebank D, Andresen JM, Alkorta-Aranburu G, Cader MZ, Roberts SA et al (2008) Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds. Genet Epidemiol 32(5):445–453

    Google Scholar 

  40. Lee JM, Wheeler VC, Chao MJ, Vonsattel JPG, Pinto RM, Lucente D et al (2015) Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162(3):516–526

    Article  CAS  Google Scholar 

  41. Dragileva E, Hendricks A, Teed A, Gillis T, Lopez ET, Friedberg EC et al (2009) Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol Dis 33(1):37–47

    Article  CAS  PubMed  Google Scholar 

  42. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J et al (2013) Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches. PLoS Genet 9(10):e1003930

    Google Scholar 

  43. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  CAS  PubMed  Google Scholar 

  44. Biglan KM, Ross CA, Langbehn DR, Aylward EH, Stout JC, Queller S et al (2009) Motor abnormalities in Premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord 24(12):1763–1772

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marshall F (2004) Clinical features and treatment of Huntington’s disease. In: Watts R, Koller W (eds) Movement disorders: neurological principles and practice. McGraw-Hill, New York

    Google Scholar 

  46. Young AB, Shoulson I, Penney JB, Starosta-Rubinstein S, Gomez F, Travers H et al (1986) Huntington’s disease in Venezuela: neurologic features and functional decline. Neurology 36(2):244–249

    Article  CAS  PubMed  Google Scholar 

  47. Rosenblatt A, Liang KY, Zhou H, Abbott MH, Gourley LM, Margolis RL et al (2006) The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66(7):1016–1020

    Article  CAS  PubMed  Google Scholar 

  48. Ribai P, Nguyen K, Hahn-Barma V, Gourfinkel I, Vidailhet M, Legout A et al (2007) Psychiatric and cognitive difficulties as indicators of juvenile Huntington disease onset in 29 patients. Arch Neurol 64(6):813–819

    Article  PubMed  Google Scholar 

  49. Xing SH, Chen L, Chen X, Pei Z, Zeng JS, Li JR (2008) Excessive blinking as an initial manifestation of juvenile Huntington’s disease. Neurol Sci 29(4):275–277

    Article  PubMed  Google Scholar 

  50. Ho AK, Sahakian BJ, Brown RG, Barker RA, Hodges JR, Ane MN et al (2003) Profile of cognitive progression in early Huntington’s disease. Neurology 61(12):1702–1706

    Article  CAS  PubMed  Google Scholar 

  51. Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119:1633–1645

    Article  PubMed  Google Scholar 

  52. Paulsen JS (2011) Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 11(5):474–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Snowden J, Craufurd D, Griffiths H, Thompson J, Neary D (2001) Longitudinal evaluation of cognitive disorder in Huntington’s disease. J Int Neuropsychol Soc 7(1):33–44

    Article  CAS  PubMed  Google Scholar 

  54. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC et al (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawrence AD, Hodges JR, Rosser AE, Kershaw A, ffrench-Constant C, Rubinsztein DC et al (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121:1329–1341

    Google Scholar 

  56. Peavy GM, Jacobson MW, Goldstein JL, Hamilton JM, Kane A, Gamst AC et al (2010) Cognitive and functional decline in Huntington’s disease: dementia criteria revisited. Mov Disord 25(9):1163–1169

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sprengelmeyer R, Schroeder U, Young AW, Epplen JT (2006) Disgust in pre-clinical Huntington’s disease: a longitudinal study. Neuropsychologia 44(4):518–533

    Article  CAS  PubMed  Google Scholar 

  58. Johnson SA, Stout JC, Solomon AC, Langbehn DR, Aylward EH, Cruce CB et al (2007) Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington’s disease. Brain 130:1732–1744

    Article  PubMed  Google Scholar 

  59. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12(7):637–649

    Article  PubMed  Google Scholar 

  60. Brandt J, Butters N (1986) The neuropsychology of Huntington’s disease. Trends Neurosci:118–120

    Google Scholar 

  61. Wahlin TBR, Lundin A, Dear K (2007) Early cognitive deficits in Swedish gene carriers of Huntington’s disease. Neuropsychology 21(1):31–44

    Article  Google Scholar 

  62. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC, Investigators P-H (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62(12):1341–1346

    Article  PubMed  Google Scholar 

  63. Thompson J, Harris J, Sollom A, Stopford C, Howard E, Snowden J, et al. (2013) Longitudinal evaluation of neuropsychiatric symptoms in Huntington’s disease. J Neuropsychiatry Clin Neurosci 24:53–60

    Google Scholar 

  64. Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G et al (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78(9):939–943

    Article  PubMed  Google Scholar 

  65. Rosenblatt A (2007) Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci 9(2):191–197

    PubMed  PubMed Central  Google Scholar 

  66. van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19(4):441–448

    Article  PubMed  Google Scholar 

  67. Du X, Pang TYC, Hannan AJ (2013) A tale of two maladies? Pathogenesis of depression with and without the Huntington’s disease gene mutation. Front Neurol 4:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Thu DC, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133(Pt 4):1094–1110

    Article  PubMed  Google Scholar 

  69. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ et al (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130(Pt 1):206–221

    Article  PubMed  Google Scholar 

  70. Novak MJU, Tabrizi SJ (2011) Huntington’s disease: clinical presentation and treatment. Int Rev Neurobiol 98:297–323

    Article  PubMed  Google Scholar 

  71. Claes S, van Zand K, Legius E, Dom R, Malfroid M, Baro F et al (1995) Correlations between triplet repeat expansion and clinical features in Huntington’s disease. Arch Neurol 52(8):749–753

    Article  CAS  PubMed  Google Scholar 

  72. Biglan KM, Zhang Y, Long JD, Geschwind M, Kang GA, Killoran A et al (2013) Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  73. Loy CT, McCusker EA (2013) Is a motor criterion essential for the diagnosis of clinical Huntington disease? PLoS Curr 5

    Google Scholar 

  74. Folstein SE (1989) Huntington’s disease: a disorder of families. John’s Hopkins University Press, Baltimore

    Google Scholar 

  75. Zappacosta B, Monza D, Meoni C, Austoni L, Soliveri P, Gellera C et al (1996) Psychiatric symptoms do not correlate with cognitive decline, motor symptoms, or CAG repeat length in Huntington’s disease. Arch Neurol 53(6):493–497

    Article  CAS  PubMed  Google Scholar 

  76. Tippett L, Hogg V (2015) All in the family: Huntington’s disease, variability and challenges for clinical neuropsychology. In: Macniven JAB (ed) Neuropsychological formulation. Springer, Heidelberg, pp 47–70

    Google Scholar 

  77. Anca MH, Gazit E, Loewenthal R, Ostrovsky O, Frydman M, Giladi N (2004) Different phenotypic expression in monozygotic twins with Huntington disease. Am J Med Genet A 124A(1):89–91

    Article  CAS  PubMed  Google Scholar 

  78. Georgiou N, Bradshaw JL, Chiu E, Tudor A, O'Gorman L, Phillips JG (1999) Differential clinical and motor control function in a pair of monozygotic twins with Huntington’s disease. Mov Disord 14(2):320–325

    Article  CAS  PubMed  Google Scholar 

  79. Gomez-Esteban JC, Lezcano E, Zarranz JJ, Velasco F, Garamendi I, Perez T et al (2007) Monozygotic twins suffering from Huntington’s disease show different cognitive and behavioural symptoms. Eur Neurol 57(1):26–30

    Article  CAS  PubMed  Google Scholar 

  80. Panas M, Karadima G, Markianos M, Kalfakis N, Vassilopoulos D (2008) Phenotypic discordance in a pair of monozygotic twins with Huntington’s disease. Clin Genet 74(3):291–292

    Article  CAS  PubMed  Google Scholar 

  81. Macmillan JC, Snell RG, Tyler A, Houlihan GD, Fenton I, Cheadle JP et al (1993) Molecular analysis and clinical correlations of the Huntington's disease mutation. Lancet 342(8877):954–958

    Google Scholar 

  82. Hockly E, Cordery PM, Woodman B, Mahal A, van Dellen A, Blakemore C et al (2002) Environmental enrichment slows disease progression in R61/2 Huntington’s disease mice. Ann Neurol 51(2):235–242

    Article  PubMed  Google Scholar 

  83. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404(6779):721–722

    Article  PubMed  Google Scholar 

  84. Trembath MK, Horton ZA, Tippett L, Hogg V, Collins VR, Churchyard A et al (2010) A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Mov Disord 25(10):1444–1450

    Article  PubMed  Google Scholar 

  85. Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE et al (1997) Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 48(2):394–399

    Article  CAS  PubMed  Google Scholar 

  86. de la Monte SM, Vonsattel JP, Richardson EP Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47(5):516–525

    Article  PubMed  Google Scholar 

  87. Vonsattel JP, Keller C, Del Pilar Amaya M (2008) Neuropathology of Huntington’s disease. Handb Clin Neurol 89:599–618

    Article  PubMed  Google Scholar 

  88. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44(6):559–577

    Google Scholar 

  89. Bird ED, Iversen LL (1974) Huntington’s chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97(3):457–472

    Article  CAS  PubMed  Google Scholar 

  90. Bird ED, Mackay AV, Rayner CN, Iversen LL (1973) Reduced glutamic-acid-decarboxylase activity of post-mortem brain in Huntington’s chorea. Lancet 1(7812):1090–1092

    Article  CAS  PubMed  Google Scholar 

  91. Perry TL, Hansen S, Kloster M (1973) Huntington’s chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J med 288(7):337–342

    Article  CAS  PubMed  Google Scholar 

  92. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    Article  CAS  PubMed  Google Scholar 

  93. Seto-Ohshima A, Emson PC, Lawson E, Mountjoy CQ, Carrasco LH (1988) Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1234:1252–1254

    Article  Google Scholar 

  94. Augood SJ, Faull RL, Love DR, Emson PC (1996) Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington’s disease: a detailed cellular in situ hybridization study. Neuroscience 72(4):1023–1036

    Article  CAS  PubMed  Google Scholar 

  95. Marshall PE, Landis DMD, Zalneraitis EL (1983) Immunocytochemical studies of substance-P and leucine-enkephalin in Huntington's disease. Brain Res 289(1–2):11–26

    Google Scholar 

  96. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 27(3):143–164

    Article  CAS  PubMed  Google Scholar 

  97. Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97(3):505–519

    Article  CAS  PubMed  Google Scholar 

  98. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85(15):5733–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cicchetti F, Parent A (1996) Striatal interneurons in Huntington’s disease: selective increase in the density of calretinin-immunoreactive medium-sized neurons. Mov Disord 11(6):619–626

    Article  CAS  PubMed  Google Scholar 

  100. Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34(1–2):80–101

    Article  CAS  PubMed  Google Scholar 

  101. Dawbarn D, Dequidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurons in Huntington’s disease. Brain Res 340(2):251–260

    Google Scholar 

  102. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46(1):12–27

    Article  CAS  PubMed  Google Scholar 

  103. Reiner A, Shelby E, Wang HB, DeMarch Z, Deng YP, Guley NH et al (2013) Striatal parvalbuminergic neurons are lost in Huntington’s disease: implications for dystonia. Mov Disord 28(12):1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  105. Dure LS, Young AB, Penney JB (1992) Compartmentalization of excitatory amino-acid receptors in human striatum. Proc Natl Acad Sci U S A 89(16):7688–7692

    Article  PubMed  PubMed Central  Google Scholar 

  106. Graybiel AM, Ragsdale CW, Jr. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 1978;75(11):5723-5726.

    Google Scholar 

  107. Waldvogel HJ, Kubota Y, Fritschy JM, Mohler H, Faull RLM (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340

    Article  CAS  PubMed  Google Scholar 

  108. Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54(1):105–120

    Article  CAS  PubMed  Google Scholar 

  109. Morton AJ, Nicholson LF, Faull RL (1993) Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington’s disease. Neuroscience 53(1):159–168

    Article  CAS  PubMed  Google Scholar 

  110. Faull RL, Waldvogel HJ, Nicholson LF, Synek BJ (1993) The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat. Prog Brain Res 99:105–123

    Google Scholar 

  111. Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610

    CAS  PubMed  Google Scholar 

  112. Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C et al (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. NeuroImage 32(4):1562–1575

    Article  CAS  PubMed  Google Scholar 

  113. Lange H, Thorner G, Hopf A, Schroder KF (1976) Morphometric studies of neuropathological changes in choreatic diseases. J Neurol Sci 28(4):401–425

    Article  CAS  PubMed  Google Scholar 

  114. Glass M, Faull RL, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56(3):523–527

    Article  CAS  PubMed  Google Scholar 

  115. Allen KL, Waldvogel HJ, Glass M, Faull RL (2009) Cannabinoid (CB1), GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington’s disease. J Chem Neuroanat 37(4):266–281

    Google Scholar 

  116. Penney JB Jr, Young AB (1982) Quantitative autoradiography of neurotransmitter receptors in Huntington disease. Neurology 32(12):1391–1395

    Article  PubMed  Google Scholar 

  117. Cudkowicz M, Kowall NW (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol 27:200–204

    Article  CAS  PubMed  Google Scholar 

  118. Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133(2):257–261

    Article  CAS  PubMed  Google Scholar 

  119. Macdonald V, Halliday G (2002) Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis 10(3):378–386

    Article  PubMed  Google Scholar 

  120. Macdonald V, Halliday GM, Trent RJ, McCusker EA (1997) Significant loss of pyramidal neurons in the angular gyrus of patients with Huntington’s disease. Neuropathol Appl Neurobiol 23(6):492–495

    Article  CAS  PubMed  Google Scholar 

  121. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiat 55(3):215–224

    Article  CAS  PubMed  Google Scholar 

  122. Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH et al (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5):695–701

    Article  CAS  PubMed  Google Scholar 

  123. Rosas HD, Salat DH, Lee SY, Zaleta AK, Hevelone N, Hersch SM (2008) Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci 1147:196–205

    Article  PubMed  PubMed Central  Google Scholar 

  124. Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154(2):663–672

    Article  CAS  PubMed  Google Scholar 

  125. Nana AL, Kim EH, Thu DC, Oorschot DE, Tippett LJ, Hogg VM et al (2014) Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington’s disease. J Huntingtons Dis 3(1):45–64

    PubMed  Google Scholar 

  126. Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41(7):1117–1123

    Article  CAS  PubMed  Google Scholar 

  127. Sotrel A, Williams RS, Kaufmann WE, Myers RH (1993) Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington’s disease: a quantitative Golgi study. Neurology 43:2088–2096

    Article  CAS  PubMed  Google Scholar 

  128. Gu X, Andre VM, Cepeda C, Li SH, Li XJ, Levine MS et al (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, Gangnus D et al (1994) Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol 88(4):320–333

    Article  CAS  PubMed  Google Scholar 

  130. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31(1):21–29

    PubMed  PubMed Central  Google Scholar 

  131. Hobbs NZ, Pedrick AV, Say MJ, Frost C, Dar Santos R, Coleman A et al (2011) The structural involvement of the cingulate cortex in premanifest and early Huntington’s disease. Mov Disord 26(9):1684–1690

    Article  PubMed  Google Scholar 

  132. Ferrer I, Kulisevsky J, Gonzalez G, Escartin A, Chivite A, Casas R (1994) Parvalbumin-immunoreactive neurons in the cerebral-cortex and striatum in Huntington's disease. Neurodegeneration 3(2):169–173

    Google Scholar 

  133. Kim EH, Thu DCV, Tippett LJ, Oorschot DE, Hogg VM, Roxburgh R et al (2014) Cortical interneuron loss and symptom heterogeneity in Huntington disease. Ann Neurol 75(5):717–727

    Article  CAS  PubMed  Google Scholar 

  134. Kassubek J, Juengling FD, Ecker D, Landwehrmeyer GB (2005) Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex 15(6):846–853

    Article  PubMed  Google Scholar 

  135. Heinsen H, Rub U, Bauer M, Ulmar G, Bethke B, Schuler M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97(6):613–622

    Article  CAS  PubMed  Google Scholar 

  136. Deng YP, Wong T, Bricker-Anthony C, Deng B, Reiner A (2013) Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington’s disease mice. Neurobiol Dis 60:89–107

    Article  CAS  PubMed  Google Scholar 

  137. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30(44):14610–14618

    Article  CAS  PubMed  Google Scholar 

  138. van Wamelen D, Aziz N, Anink J, van Steenhoven R, Angeloni D, Fraschini F et al (2013) Suprachiasmatic nucleus neuropeptide expression in patients with Huntington’s disease. Sleep 36(1):117–125

    PubMed  PubMed Central  Google Scholar 

  139. Aziz A, Fronczek R, Maat-Schieman M, Unmehopa U, Roelandse F, Overeem S et al (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18(4):474–483

    CAS  PubMed  Google Scholar 

  140. Hult S, Schultz K, Soylu R, Petersen A (2010) Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets 11(10):1237–1249

    Article  CAS  PubMed  Google Scholar 

  141. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci 25(1):157–163

    Article  CAS  PubMed  Google Scholar 

  142. Petersen A, Gil J, Maat-Schieman ML, Bjorkqvist M, Tanila H, Araujo IM et al (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14(1):39–47

    Article  CAS  PubMed  Google Scholar 

  143. Petersen A, Mani K, Brundin P (1999) Recent advances on the pathogenesis of Huntington’s disease. Exp Neurol 157(1):1–18

    Article  CAS  PubMed  Google Scholar 

  144. Kremer HP, Roos RA, Dingjan G, Marani E, Bots GT (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49(4):371–382

    Article  CAS  PubMed  Google Scholar 

  145. Kremer HP, Roos RA, Dingjan GM, Bots GT, Bruyn GW, Hofman MA (1991) The hypothalamic lateral tuberal nucleus and the characteristics of neuronal loss in Huntington’s disease. Neurosci Lett 132(1):101–104

    Article  CAS  PubMed  Google Scholar 

  146. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56(5):487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fourie C, Kim E, Waldvogel H, Wong J, Faull R, McGregor A et al (2014) Differential changes in postsynaptic density proteins in post-mortem Huntington’s disease and Parkinson’s disease human brains. J Neurodegener Dis 2014:938530

    Google Scholar 

  148. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60(10):1615–1620

    Article  CAS  PubMed  Google Scholar 

  149. van den Bogaard SJA, Dumas EM, Ferrarini L, Milles J, van Buchem MA, van der Grond J et al (2011) Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy – results from the TRACK-HD study. J Neurol Sci 307(1–2):60–68

    Article  PubMed  Google Scholar 

  150. Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D et al (2013) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23(2):165–177

    Article  PubMed  CAS  Google Scholar 

  151. Aylward EH (2014) Magnetic resonance imaging striatal volumes: a biomarker for clinical trials in Huntington’s disease. Mov Disord 29(11):1429–1433

    Article  PubMed  PubMed Central  Google Scholar 

  152. Georgiou-Karistianis N, Scahill R, Tabrizi SJ, Squitieri F, Aylward E (2013) Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 37(3):480–490

    Article  PubMed  Google Scholar 

  153. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10(4):204–216

    Article  CAS  PubMed  Google Scholar 

  154. Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10(6):573–590

    Article  CAS  PubMed  Google Scholar 

  155. Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82(4):405–410

    Article  PubMed  Google Scholar 

  156. Paulsen JS, Nopoulos PC, Aylward E, Ross CA, Johnson H, Magnotta VA et al (2010) Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull 82(3–4):201–207

    Article  PubMed  PubMed Central  Google Scholar 

  157. Aylward EH, Codori AM, Rosenblatt A, Sherr M, Brandt J, Stine OC et al (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15(3):552–560

    Article  CAS  PubMed  Google Scholar 

  158. Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 122:1667–1678

    Article  PubMed  Google Scholar 

  159. Majid DSA, Aron AR, Thompson W, Sheldon S, Hamza S, Stoffers D et al (2011) Basal ganglia atrophy in prodromal Huntington’s disease is detectable over one year using automated segmentation. Mov Disord 26(14):2544–2551

    Article  PubMed  Google Scholar 

  160. Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RAC, Durr A, Craufurd D et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8(9):791–801

    Article  PubMed  PubMed Central  Google Scholar 

  161. Harris GJ, Pearlson GD, Peyser CE, Aylward EH, Roberts J, Barta PE et al (1992) Putamen volume reduction on magnetic-resonance-imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31(1):69–75

    Google Scholar 

  162. Aylward EH, Liu DW, Nopoulos PC, Ross CA, Pierson RK, Mills JA et al (2012) Striatal volume contributes to the prediction of onset of Huntington disease in incident cases. Biol Psychiatry 71(9):822–828

    Article  PubMed  Google Scholar 

  163. Vandenberghe W, Demaerel P, Dom R, Maes F (2009) Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. J Neurol 256(1):109–114

    Article  PubMed  Google Scholar 

  164. Paulsen JS, Long JD, Johnson HJ, Aylward EH, Ross CA, Williams JK et al (2014) Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Front Aging Neurosci 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tabrizi SJ, Reilmann R, Roos RAC, Durr A, Leavitt B, Owen G et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11(1):42–53

    Article  PubMed  Google Scholar 

  166. Campodonico JR, Aylward E, Codori AM, Young C, Krafft L, Magdalinski M et al (1998) When does Huntington’s disease begin? J Int Neuropsychol Soc 4(5):467–473

    Article  CAS  PubMed  Google Scholar 

  167. Jurgens CK, van de Wiel L, van Es ACGM, Grimbergen YM, Witjes-Ane MNW, van der Grond J et al (2008) Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington’s disease. J Neurol 255(11):1785–1791

    Article  PubMed  Google Scholar 

  168. Scahill RI, Hobbs NZ, Say MJ, Bechtel N, Henley SMD, Hyare H et al (2013) Clinical impairment in premanifest and early Huntington’s disease is associated with regionally specific atrophy. Hum Brain Mapp 34(3):519–529

    PubMed  Google Scholar 

  169. Nopoulos PC, Aylward EH, Ross CA, Johnson HJ, Magnotta VA, Juhl AR et al (2010) Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 40(3):544–554

    Article  PubMed  PubMed Central  Google Scholar 

  170. Aylward EH, Anderson NB, Bylsma FW, Wagster MV, Barta PE, Sherr M et al (1998) Frontal lobe volume in patients with Huntington’s disease. Neurology 50(1):252–258

    Article  CAS  PubMed  Google Scholar 

  171. Hobbs NZ, Henley SMD, Ridgway GR, Wild EJ, Barker RA, Scahill RI et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81(7):756–763

    Article  PubMed  Google Scholar 

  172. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F et al (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  CAS  PubMed  Google Scholar 

  173. Kipps CM, Duggins AJ, Mahant N, Gomes L, Ashburner J, McCusker EA (2005) Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. J Neurol Neurosurg Psychiatry 76(5):650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65(5):745–747

    Article  CAS  PubMed  Google Scholar 

  176. Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131(Pt 4):1057–1068

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K et al (2011) A tale of two factors: what determines the rate of progression in Huntington’s disease? A longitudinal MRI study. Mov Disord 26(9):1691–1697

    Article  PubMed  PubMed Central  Google Scholar 

  178. Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartres-Faz D, Arnold J et al (2013) Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. NeuroImage 83:472–484

    Article  PubMed  Google Scholar 

  179. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61(4):1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  180. Crawford HE, Hobbs NZ, Keogh R, Langbehn DR, Frost C, Johnson H et al (2013) Corpus callosal atrophy in premanifest and early Huntington’s disease. J Huntingtons Dis 2(4):517–526

    CAS  PubMed  Google Scholar 

  181. Fennema-Notestine C, Archibald SL, Jacobson MW, Corey-Bloom J, Paulsen JS, Peavy GM et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63(6):989–995

    Article  CAS  PubMed  Google Scholar 

  182. Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P et al (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. NeuroImage 49(4):2995–3004

    Article  PubMed  Google Scholar 

  183. Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM et al (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21(9):1317–1325

    Article  PubMed  Google Scholar 

  184. Sritharan A, Egan GF, Johnston L, Horne M, Bradshaw JL, Bohanna I et al (2010) A longitudinal diffusion tensor imaging study in symptomatic Huntington’s disease. J Neurol Neurosurg Psychiatry 81(3):257–262

    Article  PubMed  Google Scholar 

  185. Dumas EM, van den Bogaard SJA, Ruber ME, Reilman RR, Stout JC, Craufurd D et al (2012) Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 33(1):203–212

    Article  PubMed  Google Scholar 

  186. Novak MJU, Seunarine KK, Gibbard CR, Hobbs NZ, Scahill RI, Clark CA et al (2014) White matter integrity in premanifest and early Huntington’s disease is related to caudate loss and disease progression. Cortex 52:98–112

    Article  PubMed  Google Scholar 

  187. Klöppel S, Draganski B, Golding CV, Chu C, Nagy Z, Cook PA et al (2008) White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 131:196–204

    Google Scholar 

  188. Sprengelmeyer R, Orth M, Muller HP, Wolf RC, Gron G, Depping MS et al (2014) The neuroanatomy of subthreshold depressive symptoms in Huntington’s disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study. Psychol Med 44(9):1867–1878

    Article  CAS  PubMed  Google Scholar 

  189. Gregory S, Scahill RI, Seunarine KK, Stopford C, Zhang H, Zhang J et al (2015) Neuropsychiatry and white matter microstructure in Huntington’s disease. J Huntington’s Dis 4(3):239–249

    Google Scholar 

  190. Perry TL, Wright JM, Hansen S, Thomas SMB, Allan BM, Baird PA et al (1982) A double-blind clinical-trial of isoniazid in Huntington disease. Neurology 32(4):354–358

    Article  CAS  PubMed  Google Scholar 

  191. Scigliano G, Giovannini P, Girotti F, Grassi MP, Caraceni T, Schechter PJ (1984) Gamma-vinyl GABA treatment of Huntington’s disease. Neurology 34(1):94–96

    Article  CAS  PubMed  Google Scholar 

  192. Paleacu D (2007) Tetrabenazine in the treatment of Huntington’s disease. Neuropsychiatr Dis Treat 3(5):545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Jamwal S, Kumar P (2015) Antidepressants for neuroprotection in Huntington’s disease: a review. Eur J Pharmacol 769:33–42

    Article  CAS  PubMed  Google Scholar 

  194. Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E et al (2014) Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg 121(1):114–122

    Article  PubMed  Google Scholar 

  195. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat rev Neurosci 14(10):708–721

    Article  CAS  PubMed  Google Scholar 

  196. Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM et al (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci 22(5):1592–1599

    CAS  PubMed  Google Scholar 

  197. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK et al (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20(12):4389–4397

    CAS  PubMed  Google Scholar 

  198. Rosas HD, Doros G, Gevorkian S, Malarick K, Reuter M, Coutu JP et al (2014) PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82(10):850–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR et al (2009) Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A 106(30):12483–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dunnett SB, Rosser AE (2004) Cell therapy in Huntington’s disease. NeuroRx 1(4):394–405

    Article  PubMed  PubMed Central  Google Scholar 

  201. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Bio 11(4):301–307

    Article  CAS  Google Scholar 

  202. Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I et al (2014) Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 76(1):31–42

    Article  CAS  PubMed  Google Scholar 

  203. Kay C, Skotte NH, Southwell AL, Hayden MR (2014) Personalized gene silencing therapeutics for Huntington disease. Clin Genet 86(1):29–36

    Article  CAS  PubMed  Google Scholar 

  204. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102(16):5820–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette J. Tippett PhD, DipClinPsych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tippett, L.J., Waldvogel, H.J., Snell, R.G., Vonsattel, JP., Young, A.B., Faull, R.L.M. (2017). The Complexity of Clinical Huntington’s Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_5

Download citation

Publish with us

Policies and ethics