Skip to main content

Advertisement

Log in

Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6

A voxel-based FDG-positron emission tomography analysis

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the regional patterns of cerebral metabolic deficits by voxel-based FDGPET analysis in patients with distinct spinocerebellar ataxia (SCA) genotypes, including SCA type 2 (SCA2), SCA3, and SCA6. Nine patients with SCA2, 12 with SCA3, seven with SCA6, and 23 healthy control subjects were recruited. The clinical severity of the patients’ cerebellar ataxia was evaluated according to the International Cooperative Ataxia Rating Scale. The brain glucose metabolism was evaluated with 2- [fluorine 18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography. Group data were analyzed and compared by voxelbased analysis. In SCA2, FDG utilization was significantly reduced in the cerebellum, pons, parahippocampal gyrus and frontal cortex. In SCA3, FDG metabolism in the cerebellum, parahippocampal gyrus of the limbic system, and lentiform nucleus was decreased. In SCA6, FDG metabolism was diminished in the cerebellum and the frontal and prefrontal cortices. On group comparisons, while all SCAs have impaired cerebellar functions, the cerebellar FDG metabolism was most severely compromised in SCA2. Instead, the FDG metabolism in the lentiform nucleus and medulla was characteristically worst in SCA3. There was no brainstem involvement in SCA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abele M, Burk K, Andres F, et al. (1997) Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain 120:2141–2148

    Article  PubMed  Google Scholar 

  2. Bang OY, Huh K, Lee PH, Kim HJ. (2003) Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch Neurol 60:1566–1574

    Article  PubMed  Google Scholar 

  3. Boesch SM, Schocke M, Burk K, et al. (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar types 2 and 6. J Magnet Res Imag 13:553–559

    Article  CAS  Google Scholar 

  4. Brenneis C, Bosch SM, Schocke M, et al. (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802

    Article  PubMed  Google Scholar 

  5. Burk K, Globas C, Bosch S, et al. (1999) Cognitive deficits in spinocerebellar ataxia 2. Brain 122:769–777

    Article  PubMed  Google Scholar 

  6. Chen JT, Lin YY, Lee YC, et al. (2004) Prolonged central motor conduction time of lower limb muscles in spinocerebellar ataxia 6. J Clin Neurosci 11:381–383

    Article  CAS  PubMed  Google Scholar 

  7. Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, Bellance R, Buisson GG, Chneiweiss H, Dellanave J, et al. (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118:1573–81

    Article  PubMed  Google Scholar 

  8. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 97:306–10

    Article  CAS  PubMed  Google Scholar 

  9. Etchebehere EC, Cendes F, Lopes-Cendes I, et al. (2001) Brain single-photon emission computed tomography and magnetic resonance imaging in Machado- Joseph disease. Arch Neurol 58:1257–1263

    Article  CAS  PubMed  Google Scholar 

  10. Gilman S, Markel DS, Koeppe RA, et al. (1988) Cerebellar and brainstem hypometabolism in olivopontocerebellar atrophy detected with positron emission tomography. Ann Neurol 23:223–230

    Article  CAS  PubMed  Google Scholar 

  11. Gilman S, Koeppe RA, Junck L, et al. (1994) Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy. Ann Neurol 36:166–175

    Article  CAS  PubMed  Google Scholar 

  12. Giuffrida S, Saponara R, Restivo DA, et al. (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 246:383–388

    Article  CAS  PubMed  Google Scholar 

  13. Globas C, Bosch S, Zuhlke CH, Daum I, Dichgans J, Burk K. (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6. J Neurol 250:1482–1487

    Article  CAS  PubMed  Google Scholar 

  14. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH. (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–50

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi T, Nakajima T, Fukuhara N. (2001) Analysis of regional cerebral blood flow and distribution volume in Machado-Joseph disease by iodine)123I IMP single photon emission computed tomography. Rinsho Shinkeigaku - Clin Neurol 41:574–581

    CAS  Google Scholar 

  16. Kim YK, Lee DS, Lee SK, et al. (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 44:1006–1012

    PubMed  Google Scholar 

  17. Kuhl DE, Phelps ME, Markham CH, et al. (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434

    Article  CAS  PubMed  Google Scholar 

  18. Lee YC, Chen JT, Liao KK, Wu ZA, Soong BW. (2003) Prolonged cortical relay time and central motor conduction in patients with spinocerebellar ataxia type 6. Clin Neurophysiol 114:458–462

    Article  PubMed  Google Scholar 

  19. Leenders KL, Palmer AJ, Quinn N, et al. (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatr 49:853–860

    Article  CAS  PubMed  Google Scholar 

  20. Murata Y, Yamaguchi S, Kawakami H, et al. (1998) Characteristic magnetic resonance imaging findings in Machado- Joseph disease. Arch Neurol 55:33–37

    Article  CAS  PubMed  Google Scholar 

  21. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. (2003) Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 126:2406–2418

    Article  PubMed  Google Scholar 

  22. Otsuka M, Ichiya Y, Kuwabara Y, et al. (1989) Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy. Ann Nucl Med 3:111–118

    Article  CAS  PubMed  Google Scholar 

  23. Poline JB, Worsley KJ, Holmes AP, et al. (1995) Estimating smoothness in statistical parametric maps: variability of p values. J Comput Assist Tomogr 19:788–796

    Article  CAS  PubMed  Google Scholar 

  24. Salmon E, Collette F, Degueldre C, Lemaire C, Franck G (2000) Voxelbased analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp 10:39–48

    Article  CAS  PubMed  Google Scholar 

  25. Schols L, Peters S, Szymanski S, et al. (2000) Extrapyramidal motor signs in degenerative ataxias. Arch Neurol 57:1495–1500

    Article  CAS  PubMed  Google Scholar 

  26. Schwenkreis P, Tegenthoff M, Witscher K, et al. (2002) Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain 125:301–309

    Article  PubMed  Google Scholar 

  27. Shinotoh H, Thiessen B, Snow BJ, et al. (1997) Fluorodopa and raclopride PET analysis of patients with Machado-Joseph disease. Neurology 49:1133–1136

    CAS  PubMed  Google Scholar 

  28. Soong B, Cheng C, Liu R, Shan D (1997) Machado-Joseph disease: clinical, molecular, and metabolic characterization in Chinese kindreds. Ann Neurol 41:446–452

    Article  CAS  PubMed  Google Scholar 

  29. Soong BW, Liu RS (1998) Positron emission tomography in asymptomatic gene carriers and patients with Machado- Joseph disease. J Neuro Neurosurg Psychiatr 64:499–504

    Article  CAS  Google Scholar 

  30. Soong BW, Lu YC, Choo KB, Lee HY (2001) Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58:1105–1109

    Article  CAS  Google Scholar 

  31. Soong B, Liu R, Wu L, et al. (2001) Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 58:300–304

    Article  CAS  PubMed  Google Scholar 

  32. Storey E, Forrest SM, Shaw JH, et al. (1999) Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol 56:43–50

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi H, Ikeuchi T, Honma Y, Hayashi S, Tsuji S (1998) Autosomal dominant cerebellar ataxia (SCA6): clinical, genetic and neuropathological study in a family. Acta Neuropathol 95:333–7

    Article  CAS  PubMed  Google Scholar 

  34. Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M, Tsuji S, Mizuno Y, Nishizawa M (1994) A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology 44:1302–8

    CAS  PubMed  Google Scholar 

  35. Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain 3-dimensional proportional system: an approach to cerebral imaging. New York: Thiemen Medical

    Google Scholar 

  36. Tang B, Liu C, Shen L, et al. (1997) Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57:540–544

    Article  Google Scholar 

  37. Taniwaki T, Sakai T, Kobayashi T, et al. (1997) Positron emission tomography (PET) in Machado-Joseph disease. J Neurol Sci 145:63–67

    Article  CAS  PubMed  Google Scholar 

  38. Trouillas P, Takayanagi T, Hallett M, et al. (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  CAS  PubMed  Google Scholar 

  39. Varrone A, Salvatore E, De Michele G, et al. (2004) Reduced striatal [123 I]FPCIT binding in SCA2 patients without parkinsonism. Ann Neurol 55:426–430

    Article  PubMed  CAS  Google Scholar 

  40. Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, Machulla HJ, Bares R, Klockgether T (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62:1280–5

    Article  PubMed  Google Scholar 

  41. Zawacki TM, Grace J, Friedman JH, Sudarsky L (2002) Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord 17:1004–1010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-W. Soong MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, PS., Liu, RS., Yang, BH. et al. Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6. J Neurol 254, 838–845 (2007). https://doi.org/10.1007/s00415-006-0383-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0383-9

Key words

Navigation