Skip to main content

Advertisement

Log in

The neuroprotective role of inflammation in nervous system Injuries

  • REVIEW
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The contribution of inflammation to the pathogenesis of several nervous system disorders has long been established. Other observations, however, indicate that both inflammatory cells and mediators may also have beneficial functions, assisting in repair and recovery processes. There is compelling evidence to indicate that in the injured nervous system, as in other tissues, macrophages are needed at an early stage after injury in order for healing to take place. Likewise, activated T cells of a particular specificity can reduce the spread of damage. This neuroprotective effect of T cells may be caused, at least in part, by the production of neurotrophic factors such as neurotrophin-3 or brain-derived neurotrophic factor. Interestingly, recent findings indicate that immune cells are able to produce a variety of neurotrophic factors which promote neuronal survival and may also mediate anti-inflammatory effects. Numerous cytokines are induced after nervous system injuries. Some cytokines, such as TNF-α, IL-1 and IFN-γ, are well known for their promotion of inflammatory responses. However, these cytokines also have immunosuppressive functions and their subsequent expression also assists in repair or recovery processes, suggesting a dual role for some pro-inflammatory cytokines. This should be clarified, as it may be crucial in the design of therapeutic strategies to target specific cytokine(s). Finally, there is a growing body of evidence to show that autoreactive IgM antibodies may constitute an endogenous system of tissue repair, and therefore prove of value as a therapeutic strategy. Available evidence would appear to indicate that the inflammatory response observed in several neurological conditions is more complex than previously thought. Therefore, the design of more effective therapies depends on a clear delineation of the beneficial and detrimental effects of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levinson SW (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol 173:46–62

    CAS  PubMed  Google Scholar 

  2. Alexander WS, Starr R, Fenner JE, Scott CL, Handmann E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczareck CM, Kay TW, Nicola NA, Hertzog PJ, Metcalf D, Hilton DJ (1999) SOCS1 is a critical inhibitor of interferon gamma signalling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98:597–608

    CAS  PubMed  Google Scholar 

  3. Aloisi F, Borsellino G, Samoggia P, Testa U, Chelucci C, Russo G, Peschle C, Levi G (1992). Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res 32:494–506

    CAS  PubMed  Google Scholar 

  4. Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160:4671–4680

    CAS  PubMed  Google Scholar 

  5. Aloisi F, Penna G, Polazzi E, Minghetti L,Adorini L (1999) CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells (1999). J Immunol 162:1384–1391

    CAS  PubMed  Google Scholar 

  6. Antel JP, Becher B (1998) Central nervous system—Immune interactions: Contribution to neurologic disease and recovery. In: Antel J, Birnbaum G, Hartung HP (eds) Clinical Neuroimmunology. Blackwell Science, Oxford, pp 26–39

  7. Antel J, Birnbaum G, Hartung HP (1998) Clinical Neuroimmunology. Blackwell Science, Oxford

  8. Armati PJ, Pollard JD, Gatenby P (1990) Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve 13:106–116

    CAS  PubMed  Google Scholar 

  9. Arnett HA, Masson J, Marino M, Suzuki K, Matsushima GK, Ting JPY (2001) TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nature Neurosci 4:1116–1122

    CAS  PubMed  Google Scholar 

  10. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JPY (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocytes regeneration. J Neurosci 23:9824–9832

    CAS  PubMed  Google Scholar 

  11. Asada H, Ip NY, Pan L, Razack N, Parfitt MM, Plunkett RJ (1995) Time course of ciliary neurotrophic factor mRNA expression is coincident with the presence of protoplasmic astrocytes in traumatized rat striatum. J Neurosci Res 40:22–30

    CAS  PubMed  Google Scholar 

  12. Asakura K, Miller DJ, Murray P, Bansal R, Pfeiffer SE, Rodriguez M (1996) Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J Neurosci Res 43:273–281

    CAS  PubMed  Google Scholar 

  13. Asakura K, Miller DJ, Pease LR, Rodriguez M (1998) Targeting of IgMκ antibodies to oligodendrocytes promotes CNS remyelination. J Neurosci 18:7700–7708

    CAS  PubMed  Google Scholar 

  14. Asakura K, Rodriguez M (1998) A unique population of circulating autoantibodies promotes central nervous system remyelination. Mult Scler 4:217–221

    CAS  PubMed  Google Scholar 

  15. Bai XF, Zhu J, Zhang GX, Kaponides G, Hojeberg B, van der Meide PH, Link H (1997) IL-10 suppresses experimental autoimmune neuritis and downregulates cytokine mRNA expression of Th1 and macrophage source. Clin Immunol Immunopathol 83:117–126

    CAS  PubMed  Google Scholar 

  16. Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors-implications for neural development. Curr Opin Neurobiol 10:103–110

    Google Scholar 

  17. Barde YA, Edgar D, Thoenen H (1983) New neurotrophic factors. Annu Rev Physiol 45:601–612

    CAS  PubMed  Google Scholar 

  18. Barouch R, Appel E, Kazimirsky G, Brodie C (2001) Macrophages express neurotrophins and neurotrophin receptors. Regulation of nitric oxide production by NT-3. J Neuroimmunol 112:72–77

    CAS  PubMed  Google Scholar 

  19. Barouch R, Schwartz M (2002) Autoreactive T cells induce neurotrophin production by immune and neural cells in injured rat optic nerve: Implications for protective autoimmunity. FASEB J 16:1304–1306

    CAS  PubMed  Google Scholar 

  20. Batchelor PE, Liberatore GT, Wong JYF, Porrit MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716

    CAS  PubMed  Google Scholar 

  21. Becher B, Antel JP (1996) Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18:1–10

    CAS  PubMed  Google Scholar 

  22. Be’eri H, Reichert F, Saada A, Rotshenker S (1998) The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci 10:2707–2713

    CAS  PubMed  Google Scholar 

  23. Besser M, Wang R (1999) Clonally restricted production of the neurotrophin brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162:6303–6306

    CAS  PubMed  Google Scholar 

  24. Bieber AJ, Warrington A, Asakura K, Ciric B, Kaveri SV, Pease LR, Rodriguez M (2002) Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia 37:241–249

    PubMed  Google Scholar 

  25. Bieber AJ, Kerr S, Rodriguez M (2003) Efficient central nervous system remyelination requires T cells. Ann Neurol 53:680–684

    PubMed  Google Scholar 

  26. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140:1506–1510

    CAS  PubMed  Google Scholar 

  27. Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell Immunol 81:435–440

    CAS  PubMed  Google Scholar 

  28. Brück W, Huitinga I, Dijkstra CD (1996) Liposome-mediated monocyte depletion during Wallerian degeneration defines the role of hematogenous phagocytes in myelin removal. J Neurosci Res 46:477–484

    PubMed  Google Scholar 

  29. Chaudhry V, Glass JD, Griffin JW (1992) Wallerian degeneration in peripheral nerve disease. Neurol Clin 10:613–627

    CAS  PubMed  Google Scholar 

  30. Chen MS, Huber AB, van der Haar ME, Frank M, Scnell L, Spillman AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439

    Article  CAS  PubMed  Google Scholar 

  31. Ciric B, Howe CL, Paz Soldan M, Warrington AE, Bieber AJ, van Keulen V, Rodriguez M, Pease LR (2003) Human monoclonal IgM antibody promotes CNS myelin repair independent of Fc function. Brain Pathol 13:608–616

    CAS  PubMed  Google Scholar 

  32. Ciric B, Van Keulen V, Paz Soldan M, Rodriguez M, Pease LR (2004) Antibody-mediated remyelination operates through mechanism independent of immunomodulation. J Neuroimmunol 146:153–161

    CAS  PubMed  Google Scholar 

  33. Correale J, McMillan M, McCarthy K, Le T, Weiner LP (1995) Isolation and characterization of autoreactive proteolipid protein-peptide specific T-cell clones from multiple sclerosis patients. Neurology 45:1370–1378

    CAS  PubMed  Google Scholar 

  34. Correale J, Bassani Molinas MM (2002) Oligoclonal bands and antibody responses in Multiple Sclerosis. J Neurol 249:375–389

    CAS  PubMed  Google Scholar 

  35. Cowley SA, Butter C, Gschmeissner SE, Curtis J, Turk JL (1989) An immuno-electromicroscopical study of the expression of major histocompatibility complex (MHC) class II antigens in guinea pig sciatic nerves following induction of intraneural mycobacterial granulomas. J Neuroimmunol 23:223–231

    CAS  PubMed  Google Scholar 

  36. Creange A, Barlovatz-Meimon G, Gherardi RK (1997) Cytokines and peripheral nerve disorders. Eur Cytokine Netw 8:145–151

    PubMed  Google Scholar 

  37. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    CAS  PubMed  Google Scholar 

  38. David S, Aguayo AJ (1985) Axonal regeneration after crush injury in rat central nervous system fibers innervating peripheral nerve grafts. J Neurocytol 14:1–12

    CAS  PubMed  Google Scholar 

  39. David S, Bouchard C, Tsatas O, Giftochristos N (1990) Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 5:463–469

    CAS  PubMed  Google Scholar 

  40. Day WA, Kosihi K, McLennan IS (2003) Transforming growth factor beta 1 may regulate the stability of mature myelin sheath. Exp Neurol 184:857–864

    CAS  PubMed  Google Scholar 

  41. Deller T, Haas CA, Naumann T, Joester A, Faissner A, Frotscher M (1997) Up-regulation of astrocyte-derived tenascin-C correlates with neurite out-growth in the rat dentate gyrus after unilateral entorhinal cortex lesion. Neuroscience 81:829–846

    CAS  PubMed  Google Scholar 

  42. De Jong BA, Smith ME (1997) A role for complement in phagocytosis of myelin. Neurochem Res 22:491–498

    CAS  PubMed  Google Scholar 

  43. De Kosky ST, Styren SD, O’Malley ME, Gross JR, Kochanek P, Marion D, Evans CH, Robbins PD (1996) Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Ann Neurol 39:123–127

    CAS  PubMed  Google Scholar 

  44. Duong TT, St Louis J, Gilbert JJ, Finkelman FD, Strejan GH (1992) Effect of anti-interferon gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J Neuroimmunol 36:105–115

    CAS  PubMed  Google Scholar 

  45. Dyer CA, Benjamins JA (1989) Organization of oligodendrocytes membrane sheets. II. Galactocerebroside: antibody interactions signal changes in cytoskeleton and myelin basic protein. J Neurosci Res 24:212–221

    CAS  PubMed  Google Scholar 

  46. Dyer CA, Benjamins JA (1991) Galactocerebroside and sulfatide independently mediate Ca2+ responses in oligodendrocytes. J Neurosci Res 30:699–711

    CAS  PubMed  Google Scholar 

  47. Dyer CA, Matthieu JM (1994) Antibodies to myelin/oligodendrocyte-specific protein and myelin/oligodendrocyte-specific glycoprotein signal distinct changes in the organization of cultured oligodendroglial membranes. J Neurochem 62:777–787

    CAS  PubMed  Google Scholar 

  48. Ehrhard PB, Erb P, Garumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T cell clones. Proc Natl Acad Sci USA 90:10984–10988

    CAS  PubMed  Google Scholar 

  49. Fernández-Valle C, Bunge RP, Bunge MB (1995) Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration. J Neurocytol 24:667–679

    PubMed  Google Scholar 

  50. Flugel A, Matsumuro K, Neumann H, Klinkert WE, Birnbacher R, Lassmann H, Otten U, Wekerle H (2001) Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis inhibition of monocyte trans-endothelial migration. Eur J Immunol 31:11–22

    CAS  PubMed  Google Scholar 

  51. Fontana A, Fierz F, Wekerle H (1994) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276

    Google Scholar 

  52. Friedman B, Scherer SS, Rudge JS, Helgren M, Morriscy D, McIain J, Wang DY, Wiegand SJ, Furth ME, Lindsay RM (1992) Regulation of ciliary neurotrophic factor expression in myelinrelated Schwann cells in vivo. Neuron 9:295–305

    CAS  PubMed  Google Scholar 

  53. Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC, Franciotta DM, Penna G, Comi G, Adorini L, Martino G (2001) Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol 167:1821–1829

    CAS  PubMed  Google Scholar 

  54. George R, Griffin JW (1994) Delayed macrophage responses and myelin clearance during wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp Neurol 129:225–236

    CAS  PubMed  Google Scholar 

  55. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604

    CAS  PubMed  Google Scholar 

  56. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490

    CAS  PubMed  Google Scholar 

  57. Gold T, Toyka KV, Hartung HP (1995) Synergistic effect of IFN-gamma and TNF-alpha on expression of immune molecules and antigen presentation by Schwann cells. Cell Immunol 165:65–70

    CAS  PubMed  Google Scholar 

  58. Griffin JW, Stoll G, Li CY, Tyor W, Cornblath DR (1990) Macrophage responses in demyelinating neuropathies. Ann Neurol 27:S64–S68

    PubMed  Google Scholar 

  59. Griffin JW, Li CY, Ho TW, Tian M, Gao CY, Xue P, Mishu B, Cornblath DR, Macko C, McKhann GM, Asbury AK (1996) Pathology of the motor-sensory axonal Guillain-Barré. Ann Neurol 39:17–28

    CAS  PubMed  Google Scholar 

  60. Grothe C, Meisinger C, Claus P (2001) In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J Comp Neurol 434:342–357

    CAS  PubMed  Google Scholar 

  61. Guenard V, Dinarello CA, Weston PJ, Aebischer P (1991) Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel. J Neurosc Res 29:396–400

    CAS  Google Scholar 

  62. Guillen C, Jander S, Stoll G (1998) Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in the rat peripheral nervous system: comparison between immune-mediated demyelination and Wallerian degeneration. J Neurosci Res 51:489–496

    PubMed  Google Scholar 

  63. Hagg T, Varon S (1993) Ciliary neurotrophic factor prevents degeneration of adult rats substantia nigra dopaminergic neurons in vivo. Proc Natl Acad Sci 90:6315–6319

    CAS  PubMed  Google Scholar 

  64. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Lindå H, van der Meide PH, Culheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    CAS  PubMed  Google Scholar 

  65. Hartung HP, Schafer B, van der Meide PH, Fierz W, Heininger K, Toyka KV (1990) The role of interferon-gamma in the pathogenesis of experimental autoimmune disease of the peripheral nervous system. Ann Neurol 27:247–257

    CAS  PubMed  Google Scholar 

  66. Hattori A, Iwasaki S, Murase K, Tsujimoto M, Sato M, Hayashi K, Khono M (1994) Tumor necrosis factor is markedly synergistic with interleukin 1 and interferon-γ in stimulating the production of nerve growth factor in fibroblasts. FEBS Letters 340:177–180

    CAS  PubMed  Google Scholar 

  67. Hauben E, Nevo U, Yoles E, Moaleem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355:286–287

    CAS  PubMed  Google Scholar 

  68. Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U, Smirnov I, Yoles E, Akselrod S, Schwartz M (2003) Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 23:8808–8819

    CAS  PubMed  Google Scholar 

  69. Henderson CE, Phillips HS, Pollock RA, Davies Am, Lemeulle C, Armanini M, Simpson LC, MoVet B, Vandlen RA, Koliatsos VE, Rosenthal A (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064

    CAS  PubMed  Google Scholar 

  70. Herx LM, Rivest S, Yong VW (2000) Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor. J Immunol 165:2232–2239

    Google Scholar 

  71. Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in non neuronal cells response to sciatic nerve transection. J Cell Biol 104:1623–1631

    CAS  PubMed  Google Scholar 

  72. Ho A, Blum M (1997) Regulation of astroglial-derived dopaminergic neurotrophic factors by interleukin-1 beta in striatum of young and middle-aged mice. Exp Neurol 148:348–359

    CAS  PubMed  Google Scholar 

  73. Howe CL, Bieber AJ, Warrington AE, Pease LR, Rodriguez M (2004) Anti-apoptotic signalling by a remyelination-promoting human antimyelin antibody. Neurobiol Dis 15:120–131

    CAS  PubMed  Google Scholar 

  74. Ip NY (1998) The neurotrophins and neuropoietic cytokines. Two families of growth factors acting on neural and hematopoietic cells. Ann N Y Acad Sci 840:97–106

    CAS  PubMed  Google Scholar 

  75. Iseda T, Nishio T, Kawaguchi S, Yamanoto M, Kawasaki T, Wakisaka S (2004) Spontaneous regeneration of the corticospinal tract after transsection in young rats: a key role of reactive astrocytes in making favourable and unfavourable conditions for regeneration. Neuroscience 126:365–374

    CAS  PubMed  Google Scholar 

  76. Jung S, Huitinga I, Schmidt B, Zielasek J, Dijkstra CD, Toyka KV, Hartung HP (1993) Selective elimination of macrophages by dichloromethylene diphosphonate-containing liposomes suppresses experimental autoimmune neuritis. J Neurol Sci 119:195–202

    CAS  PubMed  Google Scholar 

  77. Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B, Tessier-Levigne M, Bernard CC (2004) The neurite out-growth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nature Neurosci 7:736–744

    CAS  PubMed  Google Scholar 

  78. Kassiotis G, Kollias G (2001) Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: Implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 193:427–434

    CAS  PubMed  Google Scholar 

  79. Kawaja MD, Gage FH (1991) Reactive astrocytes are substarte for the growth of adult CNS axons in the presence of elevated levels of nerve growth factors. Neuron 7:1019–1030

    CAS  PubMed  Google Scholar 

  80. Kerschensteiner M, Gallmeier E, Behrens L, Vargas Leal V, Misgeld T, Klinkert WEF, Kolbeck R, Hoppe E, Oropeza-Wekerle R, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells and monocytes produced brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  CAS  PubMed  Google Scholar 

  81. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R (2003) Neurotrophic cross-talk between the nervous and immune systems: Implications for neurological diseases. Ann Neurol 53:292–304

    Article  CAS  PubMed  Google Scholar 

  82. Kiefer R, Funa K, Schweitzer T, Jung S, Bourde O, Toyka KV, Hartung HP (1996) Transforming growth factor-β1 in experimental autoimmune neuritis: cellular localization and time course. Am J Pathol 148:211–223

    CAS  PubMed  Google Scholar 

  83. Koski CL (1998) Immune interactions in the peripheral nervous system. In: Latov N, Wokke JHJ, Kelly JJ Jr (eds). Immunology and infectious diseases of the peripheral nerves. Cambridge University Press, Cambridge, pp 1–28

  84. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212

    CAS  PubMed  Google Scholar 

  85. Krakowski M, Owens T (1996) Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 26:1641–1646

    CAS  PubMed  Google Scholar 

  86. Kuhlmann T, Bruck W (1999) Immunoglobulins induced myelin debris clearance by mouse macrophages. Neurosci Lett 19:191–194

    Google Scholar 

  87. Lambiase A, Bracci-Laudiero L, Bonini S, Bonini S, Starace G, D’Elios MM, De Carli M, Aloe L (1997) Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol 100:408–414

    CAS  PubMed  Google Scholar 

  88. Latov N, Wokke JHJ, Kelly JJ Jr (1998) Immunology and infectious diseases of the peripheral nerves. Cambridge University Press, Cambridge

  89. Lazarov-Spiegeler O, Salomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V, Schwartz M (1996) Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J 10:1296–1302

    PubMed  Google Scholar 

  90. Lazarov-Spiegeler O, Salomon AS, Schwartz M (1998) Peripheral nervestimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve. Glia 24:329–337

    PubMed  Google Scholar 

  91. Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317

    Article  CAS  PubMed  Google Scholar 

  92. Lilje O, Armati PJ (1997) The distribution and abundance of MHC and ICAM-1 on Schwann cells in vitro. J Neuroimmunol 77:75–84

    CAS  PubMed  Google Scholar 

  93. Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658–659

    CAS  PubMed  Google Scholar 

  94. Linker RA, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassman H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: A neurotrophic cytokine as modulator in neuroinflammation. Nature Med 8:620–624

    CAS  PubMed  Google Scholar 

  95. Lisak RP, Bealmer B, Ragheb S (1994) Interleukin-1 alpha, but not interleukin 1-beta, is a co-mitogen for neonatal rat Schwann cells in vitro and acts via interleukin-1 receptors. J Neuroimmunol 55:171–177

    CAS  PubMed  Google Scholar 

  96. Mancardi GL, Cadoni A, Zicca A, Schenone A, Tabaton A, De Martin A, Zaccheo D (1988) HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology 38:848–851

    CAS  PubMed  Google Scholar 

  97. Marine JC, Topham DJ, McKay C, Wang D, Parganas E, Stravopodis E, Yoshimura A, Ihle JN (1999) SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98:609–616

    CAS  PubMed  Google Scholar 

  98. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187

    CAS  PubMed  Google Scholar 

  99. Massa PT, ter Meulen V, Fontana A (1987) Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 84:4219–4223

    CAS  PubMed  Google Scholar 

  100. Masson JL, Jones JJ, Taniike M, Morelll P, Suzuki K, Matsushima GK (2000) Mature oligodendrocytes apoptosis precedes IGF-I production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61:251–262

    PubMed  Google Scholar 

  101. Masson JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1β promotes repair of the CNS. J Neurosci 21:7046–7052

    PubMed  Google Scholar 

  102. Matsumoto Y, Ohmori K, Fujiwara M (1992) Immune regulation by brain cells in the central nervous system by microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions (1992). Immunology 76:209–216

    CAS  PubMed  Google Scholar 

  103. Mears S, Schachner M, Brushart TM (2003) Antibodies to myelin-associated glycoprotein accelerate preferential motor reinnervation. J Peripher Nerv Syst 8:91–99

    CAS  PubMed  Google Scholar 

  104. Melamed I, Kelleher CA, Franklin RA, Brodie C, Hempstead B, Kaplan D, Gelfand EW (1996) Nerve growth signal transduction in human B lymphocytes is mediated by gp 140trk. Eur J Immunol 26:1985–1992

    CAS  PubMed  Google Scholar 

  105. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Med 5:49–55

    CAS  PubMed  Google Scholar 

  106. Mohan R, Edwards ET, Cupps TR, Oliverio PJ, Sandberg G, Crayton H, Richert JR, Siegel JN (2001) Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritis. Arthritis Rheum 44:2862–2869

    CAS  PubMed  Google Scholar 

  107. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    CAS  PubMed  Google Scholar 

  108. Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci 95:5779–5784

    Article  CAS  PubMed  Google Scholar 

  109. Otten U, Ehrhard P, Peck E (1989) Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci 86:10059–10063

    CAS  PubMed  Google Scholar 

  110. Ousman SS, David S (2000) Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia 30:92–104

    CAS  PubMed  Google Scholar 

  111. Oya T, Zhao YL, Takagawa K, Kawaguchi M, Shirakawa K,Yamauchi T, Sasahara M (2002) Platelet-derived growth factor-β expression induced after rat peripheral nerve injuries. Glia 38:303–312

    PubMed  Google Scholar 

  112. Pachter JS, de Vries HE, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the Central Nervous System. J Neuropathol Exp Neurol 62:593–604

    Google Scholar 

  113. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097–1102

    CAS  PubMed  Google Scholar 

  114. Paz Soldan MM, Warrington AE, Bieber AJ, Ciric B, Van Keulen V, Pease LR, Rodríguez M (2003) Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanisms of myelin repair. Moll Cell Neurosci 22:14–24

    Google Scholar 

  115. Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral injury: A possible role for macrophages in regeneration. J Exp Med 165:1218–1223

    CAS  PubMed  Google Scholar 

  116. Pollard JD, Baverstocl J, McLeod JG (1987) Class II antigen expression and inflammatory cells in the Guillain-Barré syndrome. Ann Neurol 21:337–341

    CAS  PubMed  Google Scholar 

  117. Poulsen FR, Lagord C, Courty J, Pedersen EB, Barritault D, Finsen B (2000) Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation. Exp Brain Res 135:319–330

    CAS  PubMed  Google Scholar 

  118. Prineas JW, McLeod JG (1976) Chronic relapsing polyneuritis. J Neurol Sci 27:427–458

    CAS  PubMed  Google Scholar 

  119. Prineas JW (1981) Pathology of Guillain-Barre syndrome. Ann Neurol 9(Suppl):6–19

    PubMed  Google Scholar 

  120. Rabchensky AG, Streitt WJ (1997) Grafting of cultured microglia cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48

    PubMed  Google Scholar 

  121. Ransohoff RR, Benveniste EN (1996) Cytokines and the CNS. CRC Press, Boca Raton

  122. Ransohoff RM, Howe CL, Rodriguez M (2002) Growth factor treatment of demyelinating disease: at last, a leap into the light. Trends Immunol 23:512–516

    CAS  PubMed  Google Scholar 

  123. Rapalino O, Lazarov-Spiegeler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med 4:814–821

    CAS  PubMed  Google Scholar 

  124. Reichert F, Levitzky R, Rothshenker S (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8:530–535

    CAS  PubMed  Google Scholar 

  125. Robinson S, Miller RH (1999) Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol 216:359–368

    CAS  PubMed  Google Scholar 

  126. Rodriguez M, Lennon VA, Benveniste EN, Merril JE (1987) Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 46:84–95

    CAS  PubMed  Google Scholar 

  127. Rotshenker S, Aamar S, Barak V (1992) Interleukin-1 activity in lesioned peripheral nerve. J Neuroimmunol 39:75–80

    CAS  PubMed  Google Scholar 

  128. Saada A, Reichert F, Rotshenker S (1996) Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol 133:159–167

    CAS  PubMed  Google Scholar 

  129. Santambrogio L, Benedetti M, Caho MV, Muzaffar R, Kulig K, Gabell N, Hochwald G (1994) Nerve growth factor production by lymphocytes. J Immunol 153:4488–4495

    CAS  PubMed  Google Scholar 

  130. Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E,Marino MW, McIntosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci 96:8721–8726

    CAS  PubMed  Google Scholar 

  131. Schmidt B, Stoll G,Hartung HP, Heininger K, Schafer B, Toyka KV (1990) Macrophages but not Schwann cells express Ia antigen in experimental allergic neuritis. Ann Neurol 28:70–77

    CAS  PubMed  Google Scholar 

  132. Schwartz M, Hauben E (2002) T-cell based therapeutic vaccination for spinal cord injury. Prog Brain Res 137:401–406

    PubMed  Google Scholar 

  133. Sedgwick JD, Mossner R, Schwender S, ter Meulen V (1991) Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J Exp Med 173:1235–1246

    CAS  PubMed  Google Scholar 

  134. Shamash S, Reichert F, Rotshenker S (2002) The Cytokine network of Wallerian degeneration: Tumor necrosis factor-α, and Interleukin-1β. J Neurosci 22:3052–3060

    CAS  PubMed  Google Scholar 

  135. Shields SA, Gilson JM, Blakemore WF, Franklin RJM (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28:77–83

    CAS  PubMed  Google Scholar 

  136. Sicotte NL, Voskhul RR (2001) Onset of multiple sclerosis associated with anti-TNF therapy. Neurology 57:1885–1888

    CAS  PubMed  Google Scholar 

  137. Sindern E, Schweppe K, Ossege LM, Mailin JP (1996) Potential role of transforming growth factor-β1 in terminating the immune response in patients with Guillain-Barré syndrome. J Neurol 243:264–268

    CAS  PubMed  Google Scholar 

  138. Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T (1998) Expression of mRNA for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trkB, and trkC) in human peripheral neuropathies. Neurochem Res 23:821–829

    CAS  PubMed  Google Scholar 

  139. Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85

    Article  PubMed  Google Scholar 

  140. Stoll G, Griffin JW, Li CY, Trapp BD (1989) Wallerian degeneration in the peripheral nervous system: Participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18:671–683

    CAS  PubMed  Google Scholar 

  141. Stoll G, Jung S, Van der Meide P, Hartung HP (1993) Tumor necrosis factor-alpha in immune mediated demyelination and Wallerian degeneration of the peripheral nervous system. J Neuroimmunol 45:175–182

    CAS  PubMed  Google Scholar 

  142. The Lenercep Group (1999) TNF neutralization in MS: results of a randomized placebo-controlled multicenter study. Neurology 53:457–465

    PubMed  Google Scholar 

  143. Thorpe LW, Perez-Polo JR (1987) The influence of nerve growth factor on in vitro proliferative response of rat spleen lymphocytes. J Neurosci Res 18:134–139

    CAS  PubMed  Google Scholar 

  144. Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D, Rubartelli A, Cozzolino F, Aloe L, Garaci E (1996) Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85:345–356

    CAS  PubMed  Google Scholar 

  145. van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung HP, Polman CH (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–1534

    CAS  PubMed  Google Scholar 

  146. Villoslada P,Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191:1799–1806

    CAS  PubMed  Google Scholar 

  147. Wagner R, Myers RR (1996) Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves. Neuroscience 73:625–629

    CAS  PubMed  Google Scholar 

  148. Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, Kyle RA, Pease LR, Rodriguez M (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci 97:6820–6825

    CAS  PubMed  Google Scholar 

  149. Warrington AE, Bieber AJ, van Keulen V, Ciric B, Pease LR, Rodriguez M (2004) Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 63:461–473

    CAS  PubMed  Google Scholar 

  150. Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H, Hohlfeld R (1994) Human astrocytes are only partially competent antigen presenting cells. Possible implications for lesion development in multiple sclerosis. Brain 117:59–69

    PubMed  Google Scholar 

  151. Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor beta-1 (TGF-beta 1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95:8–18

    CAS  PubMed  Google Scholar 

  152. Weishaupt A, Gold R, Hartung H, Gaupp S, Brück W, Toyka KV (2000) Role of TNF-α in high-dose antigen therapy in experimental autoimmune neuritis: inhibition of TNF-α by neutralizing antibodies reduces T-cell apoptosis and prevents liver necrosis. J Neuropathol Exp Neurol 59:368–376

    CAS  PubMed  Google Scholar 

  153. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  154. Williams K, Ulvestad E, Antel JP (1994) B7/BB-1 antigen expression on adult microglia studied in vitro and in situ. Eur J Immunol 24:3031–3037

    CAS  PubMed  Google Scholar 

  155. Windhangen A, Newcombe J, Dangond F, Strand C, Woodroofe MNB, Cuzner ML, Hafler DA (1995) Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182:1985–1996

    PubMed  Google Scholar 

  156. Woodruff RH, Franklin RJM (1999) The expression of myelin protein mRNAs during remyelination of lysolecithin-induced demyelination. Neuropathol Appl Neurobiol 25:226–235

    CAS  PubMed  Google Scholar 

  157. Yamamoto M, Sobue G, Li M, Arakawa Y, Mitsuma T, Kimata K (1993) Nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and low-affinity nerve growth factor receptor (LNGFR) mRNA levels in cultured rat Schwann cells; differential time-and-dose-dependent regulation by cAMP. Neurosci Lett 152:37–40

    CAS  PubMed  Google Scholar 

  158. Yao DL, Liu X, Hudson LD, Webster HD (1995) Insulin-like growth factor I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 92:6190–6194

    CAS  PubMed  Google Scholar 

  159. Yoles E, Hauben E, Palgi O, Agarnov E, Gothilf A, Cohen A, Kuchroo V, Cohen IR, Weiner HL, Schwartz M (2001) Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 21:3740–3748

    CAS  PubMed  Google Scholar 

  160. Zeev-Brann AB, Lazarov-Spiegler O, Brenner T, Schwartz M (1998) Differential effects of central and peripheral nerves on macrophages and microglia. Glia 23:181–190

    CAS  PubMed  Google Scholar 

  161. Zettl UK, Mix E, Zielasek J, Stangel M, Hartung HP, Gold R (1997) Apoptosis of myelin-reactive T cells induced by reactive oxygen and nitrogen intermediates in vitro. Cell Immunol 178:1–8

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Correale MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correale, J., Villa, A. The neuroprotective role of inflammation in nervous system Injuries. J Neurol 251, 1304–1316 (2004). https://doi.org/10.1007/s00415-004-0649-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-0649-z

Key words

Navigation