Skip to main content

The Critical Roles of Immune Cells in Acute Brain Injuries

  • Chapter
  • First Online:
Immunological Mechanisms and Therapies in Brain Injuries and Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 6))

Abstract

Acute brain injuries elicit prompt and robust immune responses characterized by the activation of local glial cells and mobilization of peripheral leukocytes. The activation of immune cells originally aims to clear the brain of cellular debris and promote brain repair; however, the immune system can also propel and propagate neuronal cell death when overactivated. Understanding the function of each type of immune cells in the acute brain injuries and their mechanisms of action promises to unveil effective immunomodulatory therapies that beneficially regulate post-injury immune responses. In this chapter, we discuss in detail how immune cells are recruited and/or activated in the injured brain and how they contribute to the evolvement of brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130(Pt 6):1643–52

    Article  PubMed  Google Scholar 

  2. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–45

    Article  CAS  PubMed  Google Scholar 

  3. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141(7):2407–12

    CAS  PubMed  Google Scholar 

  4. Kigerl KA et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–44

    Article  CAS  PubMed  Google Scholar 

  5. Goerdt S et al (1999) Alternative versus classical activation of macrophages. Pathobiology 67(5–6):222–6

    Article  CAS  PubMed  Google Scholar 

  6. Durafourt BA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–27

    Article  PubMed  Google Scholar 

  7. Hu X et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–70

    Article  CAS  PubMed  Google Scholar 

  8. Selye H (1998) A syndrome produced by diverse nocuous agents, 1936. J Neuropsychiatry Clin Neurosci 10(2):230–1

    CAS  PubMed  Google Scholar 

  9. Biber K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602

    Article  CAS  PubMed  Google Scholar 

  10. Amantea D et al (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1):13–26

    Article  CAS  PubMed  Google Scholar 

  11. Bao Y et al (2010) A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation 7:92

    Article  CAS  PubMed  Google Scholar 

  12. Gliem M et al (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71(6):743–52

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka R et al (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–9

    Article  CAS  PubMed  Google Scholar 

  14. Schilling M et al (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1):25–33

    Article  PubMed  Google Scholar 

  15. Schilling M et al (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196(2):290–7

    Article  CAS  PubMed  Google Scholar 

  16. Schilling M et al (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161(3):806–12

    Article  CAS  PubMed  Google Scholar 

  17. Kokovay E, Li L, Cunningham LA (2006) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26(4):545–55

    Article  CAS  PubMed  Google Scholar 

  18. Breckwoldt MO et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA 105(47):18584–9

    Article  CAS  PubMed  Google Scholar 

  19. Schilling M et al (2009) The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res 1289:79–84

    Article  CAS  PubMed  Google Scholar 

  20. Schuette-Nuetgen K et al (2012) MCP-1/CCR-2-double-deficiency severely impairs the migration of hematogenous inflammatory cells following transient cerebral ischemia in mice. Exp Neurol 233(2):849–58

    Article  CAS  PubMed  Google Scholar 

  21. Semple BD et al (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 30(4):769–82

    Article  PubMed  Google Scholar 

  22. Price CJ et al (2004) Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke 35(7):1659–64

    Article  CAS  PubMed  Google Scholar 

  23. Kim J et al (2012) Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis 222(2):464–7

    Article  CAS  PubMed  Google Scholar 

  24. Shiga Y et al (1991) Neutrophil as a mediator of ischemic edema formation in the brain. Neurosci Lett 125(2):110–2

    Article  CAS  PubMed  Google Scholar 

  25. Matsuo Y et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25(7):1469–75

    Article  CAS  PubMed  Google Scholar 

  26. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–89

    Article  CAS  PubMed  Google Scholar 

  27. Connolly ES Jr et al (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97(1):209–16

    Article  CAS  PubMed  Google Scholar 

  28. Connolly ES Jr et al (1997) Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circ Res 81(3):304–10

    Article  CAS  PubMed  Google Scholar 

  29. Soriano SG et al (1996) Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann Neurol 39(5):618–24

    Article  CAS  PubMed  Google Scholar 

  30. Gerson A et al (1988) Umbilical arterial systolic/diastolic values in normal twin gestation. Obstet Gynecol 72(2):205–8

    CAS  PubMed  Google Scholar 

  31. Bauer NJ et al (1988) Purification, characterization, and kinetic mechanism of S-adenosyl-L-methionine:macrocin O-methyltransferase from Streptomyces fradiae. J Biol Chem 263(30):15619–25

    CAS  PubMed  Google Scholar 

  32. Gu Z et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–90

    Article  CAS  PubMed  Google Scholar 

  33. Romanic AM et al (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29(5):1020–30

    Article  CAS  PubMed  Google Scholar 

  34. Asahi M et al (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20(12):1681–9

    Article  CAS  PubMed  Google Scholar 

  35. Rosell A et al (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37(6):1399–406

    Article  CAS  PubMed  Google Scholar 

  36. Rosell A et al (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39(4):1121–6

    Article  CAS  PubMed  Google Scholar 

  37. Morancho A et al (2010) Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann N Y Acad Sci 1207:123–33

    Article  CAS  PubMed  Google Scholar 

  38. Gidday JM et al (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289(2):H558–68

    Article  CAS  PubMed  Google Scholar 

  39. Justicia C et al (2003) Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 23(12):1430–40

    Article  CAS  PubMed  Google Scholar 

  40. Ajmo CT Jr et al (2009) Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol 218(1):47–55

    Article  CAS  PubMed  Google Scholar 

  41. Schroeter M et al (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55(2):195–203

    Article  CAS  PubMed  Google Scholar 

  42. Gelderblom M et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–57

    Article  PubMed  Google Scholar 

  43. Hug A et al (2009) Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 40(10):3226–32

    Article  PubMed  Google Scholar 

  44. Peterfalvi A et al (2009) Impaired function of innate T lymphocytes and NK cells in the acute phase of ischemic stroke. Cerebrovasc Dis 28(5):490–8

    Article  CAS  PubMed  Google Scholar 

  45. Schulte-Herbruggen O et al (2009) Differential affection of intestinal immune cell populations after cerebral ischemia in mice. Neuroimmunomodulation 16(3):213–8

    Article  PubMed  Google Scholar 

  46. Kasper LH et al (1996) Induction of gammadelta T cells during acute murine infection with Toxoplasma gondii. J Immunol 157(12):5521–7

    CAS  PubMed  Google Scholar 

  47. Sciammas R et al (1997) T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 185(11):1969–75

    Article  CAS  PubMed  Google Scholar 

  48. Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–50

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Fernandez JL, Riol-Blanco L, Delgado-Martin C (2010) What is an immunological synapse? Microbes Infect 12(6):438–45

    Article  CAS  PubMed  Google Scholar 

  50. Davis DM (2009) Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat Rev Immunol 9(8):543–55

    Article  CAS  PubMed  Google Scholar 

  51. Hosseini BH et al (2009) Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci U S A 106(42):17852–7

    Article  CAS  PubMed  Google Scholar 

  52. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–26

    Article  CAS  PubMed  Google Scholar 

  53. Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–62

    Article  CAS  PubMed  Google Scholar 

  54. Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  55. Kostulas N et al (2002) Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 33(4):1129–34

    Article  PubMed  Google Scholar 

  56. Felger JC et al (2010) Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 24(5):724–37

    Article  CAS  PubMed  Google Scholar 

  57. Yilmaz A et al (2010) Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clin Sci (Lond) 118(2):147–57

    Article  Google Scholar 

  58. Hug A et al (2011) Reduced efficacy of circulating costimulatory cells after focal cerebral ischemia. Stroke 42(12):3580–6

    Article  PubMed  Google Scholar 

  59. Campanella M et al (2002) Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 33(2):586–92

    Article  PubMed  Google Scholar 

  60. Stevens SL et al (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932(1–2):110–9

    Article  CAS  PubMed  Google Scholar 

  61. Jander S et al (1995) Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 15(1):42–51

    Article  CAS  PubMed  Google Scholar 

  62. Yilmaz G et al (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–12

    Article  PubMed  Google Scholar 

  63. Brait VH et al (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30(7):1306–17

    Article  CAS  PubMed  Google Scholar 

  64. Becker K et al (2001) Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32(1):206–11

    Article  CAS  PubMed  Google Scholar 

  65. Relton JK et al (2001) Inhibition of alpha4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke 32(1):199–205

    Article  CAS  PubMed  Google Scholar 

  66. Appay V, Rowland-Jones SL (2001) RANTES: a versatile and controversial chemokine. Trends Immunol 22(2):83–7

    Article  CAS  PubMed  Google Scholar 

  67. Hurn PD et al (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27(11):1798–805

    Article  CAS  PubMed  Google Scholar 

  68. Kleinschnitz C et al (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–42

    Article  CAS  PubMed  Google Scholar 

  69. Clausen F et al (2007) T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 24(8):1295–307

    Article  PubMed  Google Scholar 

  70. Liesz A et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–9

    Article  CAS  PubMed  Google Scholar 

  71. Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4(9):835–42

    Article  CAS  PubMed  Google Scholar 

  72. Okruhlicova L et al (2002) L-arginine reduces structural remodeling in the diabetic rat myocardium. Methods Find Exp Clin Pharmacol 24(4):201–7

    Article  CAS  PubMed  Google Scholar 

  73. Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–70

    Article  CAS  PubMed  Google Scholar 

  74. Phillips S et al (2010) CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol 184(1):287–95

    Article  CAS  PubMed  Google Scholar 

  75. Ling C et al (2006) Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 26(3):731–41

    Article  CAS  PubMed  Google Scholar 

  76. Saino O et al (2010) Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke. J Neurosci Res 88(11):2385–97

    CAS  PubMed  Google Scholar 

  77. Santana MA, Rosenstein Y (2003) What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. J Cell Physiol 195(3):392–401

    Article  CAS  PubMed  Google Scholar 

  78. Liesz A et al (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134(Pt 3):704–20

    Article  PubMed  Google Scholar 

  79. Liesz A et al (2009) The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke 40(8):2849–58

    Article  CAS  PubMed  Google Scholar 

  80. Gendron A et al (2002) Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res 955(1–2):85–97

    Article  CAS  PubMed  Google Scholar 

  81. Martin A et al (2008) Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes. Mol Imaging 7(4):157–67

    CAS  PubMed  Google Scholar 

  82. Prass K et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198(5):725–36

    Article  CAS  PubMed  Google Scholar 

  83. Theodorou GL et al (2008) T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke. Clin Exp Immunol 152(3):456–63

    Article  CAS  PubMed  Google Scholar 

  84. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–93

    Article  CAS  PubMed  Google Scholar 

  85. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6(4):345–52

    Article  CAS  PubMed  Google Scholar 

  86. Collison LW et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–9

    Article  CAS  PubMed  Google Scholar 

  87. Niedbala W et al (2007) IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 37(11):3021–9

    Article  CAS  PubMed  Google Scholar 

  88. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–32

    Article  CAS  PubMed  Google Scholar 

  89. Sakaguchi S et al (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27

    Article  CAS  PubMed  Google Scholar 

  90. Ephrem A et al (2008) Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111(2):715–22

    Article  CAS  PubMed  Google Scholar 

  91. Reynolds AD et al (2010) Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–71

    Article  CAS  PubMed  Google Scholar 

  92. Reynolds AD et al (2007) Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82(5):1083–94

    Article  CAS  PubMed  Google Scholar 

  93. Yan J et al (2009) Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 206(1–2):112–7

    Article  CAS  PubMed  Google Scholar 

  94. Offner H et al (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176(11):6523–31

    CAS  PubMed  Google Scholar 

  95. Gee JM et al (2008) Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke 39(5):1575–82

    Article  PubMed  Google Scholar 

  96. Ishibashi S et al (2009) Mucosal tolerance to E-selectin promotes the survival of newly generated neuroblasts via regulatory T-cell induction after stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab 29(3):606–20

    Article  CAS  PubMed  Google Scholar 

  97. Ren X et al (2011) CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26(1):87–90

    Article  PubMed  Google Scholar 

  98. Li P et al (2013) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of neurology [published online ahead of print November 24, 2012]

    Google Scholar 

  99. Linfert D, Chowdhry T, Rabb H (2009) Lymphocytes and ischemia-reperfusion injury. Transplant Rev (Orlando) 23(1):1–10

    Article  Google Scholar 

  100. Ren X et al (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31(23):8556–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, P., Gan, Y., Mao, L., Leak, R., Chen, J., Hu, X. (2014). The Critical Roles of Immune Cells in Acute Brain Injuries. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics