Skip to main content

Advertisement

Log in

Postmortem interval determination using mRNA markers and DNA normalization

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Postmortem interval (PMI) determination is an important part of criminal investigations, but it is still subject to uncertainty. Degradation of mRNA in PMI determination has been studied in decays; however, some studies have reported no correlation between PMI and RNA degradation. Thus, we aimed to determine whether RNA quantity was correlated with PMI. Heart and brain tissues were separated from a mouse model of a 0–48 h PMI with 29 time points. We then coextracted the DNA and RNA in one tube with Bioteke coextraction kits and selected some mRNA markers associated with cell oxygen deprivation and apoptosis as target genes, such as hypoxia-associated factor (HAF), apoptosis-inducing factor (AIF), hypoxia-inducible factor 2 alpha (HIF2a), and factor inhibiting HIF (FIH). We measured the quantity of these markers using real-time quantitative PCR (qPCR), and Caspase-3 DNA and 18S were each used for normalization. The results showed that in the heart tissue, the degradation of HIF2a, AIF, and FIH was correlated with PMI, as was the degradation of HIF2a, FIH, and AIF in brain tissue when normalized with Caspase-3 DNA. However, when normalized with 18S, only the degradation of HIF2a in brain tissue was correlated with PMI. Interestingly, the quantity of HAF in brain tissue was found to increase after death with either 18S or Caspase-3 DNA normalization, and it was significantly correlated with 0–48 h PMI. These results indicated that mRNA quantity can be used to determine PMI and that Caspase-3 DNA is feasible for PMI estimation. In summary, we established mathematical models for PMI determination using multiple mRNA markers and multiple tissues and further studies are needed to validate and investigate these markers and mathematical models in human tissues.

Duo Peng and Meili Lv contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.

References

  1. Hostiuc S, Rusu MC, Manoiu VS, Vrapciu AD, Negoi I, Popescu MV (2017) Usefulness of ultrastructure studies for the estimation of the postmortem interval. A systematic review. Rom J Morphol Embryol 58(2):377–384

    PubMed  Google Scholar 

  2. Ateriya N, Saraf A, Shekhawat RS, Meshram VP (2018) The development of a post-mortem interval estimation for human remains found on land in the Netherlands, yet some facts need further exploration. Int J Legal Med. https://doi.org/10.1007/s00414-018-1920-7

    Article  Google Scholar 

  3. Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165(2):182–184. https://doi.org/10.1016/j.forsciint.2006.05.017

    Article  PubMed  Google Scholar 

  4. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pat 12 (4):451–485

    Article  Google Scholar 

  5. Van den Berge M, Wiskerke D, Gerretsen RR, Tabak J, Sijen T (2016) DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int J Legal Med 130(6):1471–1480. https://doi.org/10.1007/s00414-016-1438-9

    Article  PubMed  Google Scholar 

  6. Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval—a pilot study. Legal Med 5(4):220–227. https://doi.org/10.1016/j.legalmed.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Poor VS, Lukacs D, Nagy T, Racz E, Sipos K (2016) The rate of RNA degradation in human dental pulp reveals post-mortem interval. Int J Legal Med 130(3):615–619. https://doi.org/10.1007/s00414-015-1295-y

    Article  PubMed  Google Scholar 

  8. Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG (2011) Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank 12(4):311–318. https://doi.org/10.1007/s10561-010-9210-8

    Article  CAS  PubMed  Google Scholar 

  9. Lv YH, Ma JL, Pan H, Zeng Y, Tao L, Zhang H, Li WC, Ma KJ, Chen L (2017) Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci Med Pat 13 (1):20–27

    Article  Google Scholar 

  10. Lv YH, Ma JL, Pan H, Zhang H, Li WC, Xue AM, Wang HJ, Ma KJ, Chen L (2016) RNA degradation as described by a mathematical model for postmortem interval determination. J Forensic Legal Med 44:43–52. https://doi.org/10.1016/j.jflm.2016.08.015

    Article  Google Scholar 

  11. Heinrich M, Matt K, Lutz-Bonengel S, Schmidt U (2007) Successful RNA extraction from various human postmortem tissues. Int J Legal Med 121(2):136–142. https://doi.org/10.1007/s00414-006-0131-9

    Article  PubMed  Google Scholar 

  12. Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459(2):100–104. https://doi.org/10.1016/j.neulet.2009.04.052

    Article  CAS  PubMed  Google Scholar 

  13. Li WC, Ma KJ, Lv YH, Zhang P, Pan H, Zhang H, Wang HJ, Ma D, Chen L (2014) Postmortem interval determination using 18S-rRNA and microRNA. Sci Justice 54(4):307–310. https://doi.org/10.1016/j.scijus.2014.03.001

    Article  PubMed  Google Scholar 

  14. Fais P, Mazzotti MC, Teti G, Boscolo-Berto R, Pelotti S, Falconi M (2018) HIF1alpha protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue. J Anat 232(6):1031–1037. https://doi.org/10.1111/joa.12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng W, Lv M, Wang L, Bai P, Liang W, Zhang L (2013) mRNA degradation pattern analysis in post-mortem normalized using the DNA. Forensic Science International: Genetics Supplement Series 4 (1):e266-e267. https://doi.org/10.1016/j.fsigss.2013.10.136

    Article  Google Scholar 

  16. Tu CY, Du TS, Shao CC, Liu ZJ, Li LL, Shen YW (2018) Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pat 14 (2):194–201

    Article  CAS  Google Scholar 

  17. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. https://doi.org/10.1007/s11103-012-9885-2

    Article  CAS  Google Scholar 

  18. Inoue H, Kimura A, Tuji T (2002) Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int 130(2-3):127–132

    Article  CAS  Google Scholar 

  19. Tao L, Ma JL, Han LJ, Xu HM, Zeng Y, Yehui L, Li WC, Ma KJ, Xiao B, Chen L (2018) Early postmortem interval estimation based on Cdc25b mRNA in rat cardiac tissue. Legal Med-Tokyo 35:18–24

    Article  CAS  Google Scholar 

  20. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  21. Suresh K, Carino K, Johnston L, Servinsky L, Machamer CE, Kolb TM, Lam H, Dudek SM, An SS, Rane MJ, Shimoda LA, Damarla M (2019) A nonapoptotic endothelial barrier-protective role for caspase-3. Am J Phys Lung Cell Mol Phys 316(6):L1118–L1126. https://doi.org/10.1152/ajplung.00487.2018

    Article  CAS  Google Scholar 

  22. Boland K, Flanagan L, Prehn JH (2013) Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis 4:e725. https://doi.org/10.1038/cddis.2013.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuchipudi SV, Tellabati M, Nelli RK, White GA, Perez BB, Sebastian S, Slomka MJ, Brookes SM, Brown IH, Dunham SP, Chang K-C (2012) 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J 9:230–230. https://doi.org/10.1186/1743-422X-9-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Downes NL, Laham-Karam N, Kaikkonen MU, Yla-Herttuala S (2018) Differential but complementary HIF1alpha and HIF2alpha transcriptional regulation. Mol Ther 26(7):1735–1745. https://doi.org/10.1016/j.ymthe.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sim J, Cowburn AS, Palazon A, Madhu B, Tyrakis PA, Macias D, Bargiela DM, Pietsch S, Gralla M, Evans CE, Kittipassorn T, Chey YCJ, Branco CM, Rundqvist H, Peet DJ, Johnson RS (2018) The factor inhibiting HIF asparaginyl hydroxylase regulates oxidative metabolism and accelerates metabolic adaptation to hypoxia. Cell Metab 27(4):898–913 e897. https://doi.org/10.1016/j.cmet.2018.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan Z, Ding C, Du Y, Zhang K, Zhu JN, Zhang T, He D, Xu S, Wang X, Fan J (2014) HAF drives the switch of HIF-1alpha to HIF-2alpha by activating the NF-kappaB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol 44(2):393–402. https://doi.org/10.3892/ijo.2013.2210

    Article  CAS  PubMed  Google Scholar 

  27. Young ST, Wells JD, Hobbs GR, Bishop CP (2013) Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int 229(1-3):163 e161–163 e166. https://doi.org/10.1016/j.forsciint.2013.03.035

    Article  CAS  Google Scholar 

  28. Ali MM, Ibrahim SF, Fayed AA (2017) Using skin gene markers for estimating early postmortem interval at different temperatures. Am J Forensic Med Pathol 38(4):323–325. https://doi.org/10.1097/PAF.0000000000000337

    Article  PubMed  Google Scholar 

  29. Park YH, Seo JH, Park JH, Lee HS, Kim KW (2017) Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells. Int J Oncol 51(2):573–578. https://doi.org/10.3892/ijo.2017.4039

    Article  CAS  PubMed  Google Scholar 

  30. White K, Yang PX, Li L, Farshori A, Medina AE, Zielke HR (2018) Effect of Postmortem Interval and Years in Storage on RNA Quality of Tissue at a Repository of the NIH NeuroBioBank. Biopreserv Biobank 16 (2):148–157

    Article  CAS  Google Scholar 

  31. Williams T, Soni S, White J, Can G, Javan GT (2015) Evaluation of DNA degradation using flow cytometry: promising tool for postmortem interval determination. Am J Forensic Med Pathol 36(2):104–110. https://doi.org/10.1097/PAF.0000000000000146

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81471827, No. 81671871), the Science Foundation for the Excellent Youth Scholars of Sichuan University (No. 2082604174158), and the Science Foundation of Sichuan Public Security Department (2017SCLL04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibo Liang or Lin Zhang.

Ethics declarations

The experimental procedures and the animal use and care protocols were approved by the Ethics Committee of Sichuan University and Experimental Animal Care and Use Committee of Sichuan University, China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLSX 17 kb)

Table S2

(XLSX 15 kb)

Table S3

(XLSX 8 kb)

Fig. S1

(DOCX 23 kb)

Fig. S2

(DOCX 116 kb)

Fig. S3

(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Lv, M., Li, Z. et al. Postmortem interval determination using mRNA markers and DNA normalization. Int J Legal Med 134, 149–157 (2020). https://doi.org/10.1007/s00414-019-02199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02199-7

Keywords

Navigation