Skip to main content
Log in

Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The mitochondrial genome has a number of characteristics that provide useful information to forensic investigations. Massively parallel sequencing (MPS) technologies offer improvements to the quantitative analysis of the mitochondrial genome, specifically the interpretation of mixed mitochondrial samples. Two-person mixtures with nuclear DNA ratios of 1:1, 5:1, 10:1, and 20:1 of individuals from different and similar phylogenetic backgrounds and three-person mixtures with nuclear DNA ratios of 1:1:1 and 5:1:1 were prepared using the Precision ID mtDNA Whole Genome Panel and Ion Chef, and sequenced on the Ion PGM or Ion S5 sequencer (Thermo Fisher Scientific, Waltham, MA, USA). These data were used to evaluate whether and to what degree MPS mixtures could be deconvolved. Analysis was effective in identifying the major contributor in each instance, while SNPs from the minor contributor’s haplotype only were identified in the 1:1, 5:1, and 10:1 two-person mixtures. While the major contributor was identified from the 5:1:1 mixture, analysis of the three-person mixtures was more complex, and the mixed haplotypes could not be completely parsed. These results indicate that mixed mitochondrial DNA samples may be interpreted with the use of MPS technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513

    Article  PubMed  CAS  Google Scholar 

  2. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci 77:6715–6719

    Article  PubMed  CAS  Google Scholar 

  3. Guevara EK, Palo JU, Guillen S, Sajantila A (2016) MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the Northeast Peruvian Andes-Amazon divide. Am J Hum Biol 28:857–867

    Article  PubMed  Google Scholar 

  4. Just RS, Scheible MK, Fast SA, Sturk-Andreaggi K, Rock AW, Bush JM, Higginbotham JL, Peck MA, Ring JD, Huber GE, Xavier C, Strobl C, Lyons EA, Diegoli TM, Bodner M, Fendt L, Kralj P, Nagl S, Niederwieser D, Zimmermann B, Parson W, Irwin JA (2015) Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci Int Genet 14:141–155

    Article  PubMed  CAS  Google Scholar 

  5. King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135

    Article  PubMed  CAS  Google Scholar 

  6. Lopopolo M, Borsting C, Pereira V, Morling N (2016) A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes. Am J Phys Anthropol 161:698–704

    Article  PubMed  Google Scholar 

  7. Park S, Cho S, Seo HJ, Lee JH, Kim MY, Lee SD (2017) Entire mitochondrial DNA sequencing on massively parallel sequencing for the Korean population. J Korean Med Sci 32:587–592

    Article  PubMed  PubMed Central  Google Scholar 

  8. Parson W, Dur A (2007) EMPOP-A forensic mtDNA database. Forensic Sci Int Genet 1:88–92

    Article  PubMed  Google Scholar 

  9. Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagace R, Irwin J (2013) Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7:632–639

    Article  PubMed  CAS  Google Scholar 

  10. Irwin JA, Saunier JL, Niederstatter H, Strouss KM, Sturk KA, Diegoli TM, Brandstatter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527

    Article  PubMed  CAS  Google Scholar 

  11. Malyarchuk B, Litvinov A, Derenko M, Skonieczna K, Grzybowski T, Grosheva A, Shneider Y, Rychkov S, Zhukova O (2017) Mitogenomic diversity in Russians and poles. Forensic Sci Int Genet 30:51–56

    Article  PubMed  CAS  Google Scholar 

  12. Saunier JL, Irwin JA, Strouss KM, Ragab H, Sturk KA, Parsons TJ (2009) Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 3:e97–e103

    Article  PubMed  CAS  Google Scholar 

  13. Irwin JA, Saunier JL, Beh P, Strouss KM, Paintner CD, Parsons TJ (2009) Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 3:e119–e125

    Article  PubMed  CAS  Google Scholar 

  14. Boattini A, Castri L, Sarno S, Useli A, Cioffi M, Sazzini M, Garagnani P, De Fanti S, Pettener D, Luiselli D (2013) mtDNA variation in East Africa unravels the history of Afro-Asiatic groups. Am J Phys Anthropol 150:375–385

    Article  PubMed  Google Scholar 

  15. Chaitanya L, van Oven M, Brauer S, Zimmermann B, Huber G, Xavier C, Parson W, de Knijff P, Kayser M (2016) High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database. Forensic Sci Int Genet 21:158–167

    Article  PubMed  CAS  Google Scholar 

  16. Holland MM, McQuillan MR, O’Hanlon KA (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J 52:299–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kim H, Erlich HA, Calloway CD (2015) Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 56:208–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagace R, Kayser M (2015) Simultaneous whole mitochondrial genome sequencing with short overlapping amplicons suitable for degraded DNA using the ion torrent personal genome machine. Hum Mutat 36:1236–1247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Parson W, Huber G, Moreno L, Madel MB, Brandhagen MD, Nagl S, Xavier C, Eduardoff M, Callaghan TC, Irwin JA (2015) Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples. Forensic Sci Int Genet 15:8–15

    Article  PubMed  CAS  Google Scholar 

  20. Cho S, Kim MY, Lee JH, Lee SD (2017) Assessment of mitochondrial DNA heteroplasmy detected on commercial panel using MPS system with artificial mixture samples. Int J Legal Med. https://doi.org/10.1007/s00414-017-1755-7

  21. Coble MD, Just RS, O’Callaghan JE, Letmanyi IH, Peterson CT, Irwin JA, Parsons TJ (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Legal Med 118:137–146

    Article  PubMed  Google Scholar 

  22. Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J 42:304–309

    PubMed  CAS  Google Scholar 

  23. Bodner M, Iuvaro A, Strobl C, Nagl S, Huber G, Pelotti S, Pettener D, Luiselli D, Parson W (2015) Helena, the hidden beauty: resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample. Forensic Sci Int Genet 15:21–26

    Article  PubMed  Google Scholar 

  24. Zhou Y, Guo F, Yu J, Liu F, Zhao J, Shen H, Zhao B, Jia F, Sun Z, Song H, Jiang X (2016) Strategies for complete mitochondrial genome sequencing on Ion Torrent PGM™ platform in forensic sciences. Forensic Sci Int Genet 22:11–21

    Article  PubMed  CAS  Google Scholar 

  25. Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, Pokorak E, Prinz M, Salas A, Schneider PM, Parsons TJ (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142

    Article  PubMed  CAS  Google Scholar 

  26. Stewart JEB, Aagaard PJ, Pokorak EG, Polansky D, Budowle B (2003) Evaluation of multicapillary electrophoresis instrument for mitochondrial DNA typing. J Forensic Sci 48:571–580

    Article  PubMed  CAS  Google Scholar 

  27. Davis C, Peters D, Warshauer D, King J, Budowle B (2015) Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: enhanced data acquisition for DNA samples encountered in forensic testing. Legal Med 17:123–127

    Article  PubMed  CAS  Google Scholar 

  28. Holland MM, Wilson LA, Copeland S, Dimick G, Holland CA, Bever R, McElhoe JA (2017) MPS analysis of the mtDNA hypervariable regions on the MiSeq with improved enrichment. Int J Legal Med 131:919–931

    Article  PubMed  Google Scholar 

  29. Lindberg MR, Schmedes SE, Hewitt FC, Haas JL, Ternus KL, Kadavy DR, Budowle B (2016) A comparison and integration of MiSeq and MinION platforms for sequencing single source and mixed mitochondrial genomes. PLoS One 11:e0167600. https://doi.org/10.1371/journal.pone.0167600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting Heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Qiagen (2012) QIAamp® DNA mini and blood mini handbook. Qiagen, Valencia

    Google Scholar 

  32. Thermo Fisher Scientific (2015) Quantifiler™ HP and Trio DNA Quantification Kits User guide. Revision E Thermo Fisher Scientific, Waltham

    Google Scholar 

  33. Thermo Fisher Scientific (2016) Precision ID panels with the Ion PGM™ System Application Guide. Revision A Thermo Fisher Scientific, Waltham

    Google Scholar 

  34. Thermo Fisher Scientific (2015) Ion PGM™ Hi-Q™ Chef Kit. Revision A Thermo Fisher Scientific, Waltham

    Google Scholar 

  35. Churchill JD, King JL, Chakraborty R, Budowle B (2016) Effects of the Ion PGM Hi-Q sequencing chemistry on sequence data quality. Int J Legal Med 130:1169–1180

    Article  PubMed  Google Scholar 

  36. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  PubMed  CAS  Google Scholar 

  37. King JL, Sajantila A, Budowle B (2014) mitoSAVE: mitochondrial sequence analysis of variants in Excel. Forensic Sci Int Genet 12:122–125

    Article  PubMed  CAS  Google Scholar 

  38. Scientific Working Group on DNA Analysis Methods (SWGDAM). (2013) Interpretation guidelines for mitochondrial DNA analysis by forensic DNA testing laboratories http://media.wix.com/ugd/4344b0_c5e20877c02f403c9ba16770e8d41937.pdf

  39. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV)high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed  CAS  Google Scholar 

  40. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kloss-Brandstatter A, Pacher D, Schonherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32:25–32

    Article  PubMed  CAS  Google Scholar 

  42. Weissensteiner H, Pacher D, Kloss-Brandstatter A, Forer L, Specht G, Bandelt HJ, Kronenberg F, Antonio Salas A, Schonherr S (2016) HaploGrep2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44:58–63

    Article  CAS  Google Scholar 

  43. Riman S, Kiesler KM, Borsuk LA, Vallone PM (2017) Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int Genet 29:181–192

    Article  PubMed  CAS  Google Scholar 

  44. Seo SB, Zeng X, King JL, Larue BL, Assidi M, Al-Qahtani MH, Sajantila A, Budowle B (2015) Underlying data for sequencing the mitochondrial genome with the massively parallel sequencing platform Ion Torrent™ PGM™. BMC Genomics 16(Suppl1):S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bragg LM, Stone G, Margaret K, Butler MK, Hugenholtz P, Tyson GW (2013) Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9:e1003031. https://doi.org/10.1371/journal.pcbi.1003031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shay JW, Pierce DJ, Werbin H (1990) Mitochondrial DNA copy number is proportional to Total cell DNA under a variety of growth conditions. J Biol Chem 265:14802–14807

    PubMed  CAS  Google Scholar 

  47. Bright J, Taylor D, McGovern C, Cooper S, Russell L, Abarno D, Buckleton J (2016) Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Sci Int Genet 23:226–239

    Article  PubMed  CAS  Google Scholar 

  48. Bright J, Taylor D, Curran JM, Buckleton JS (2013) Developing allelic and stutter peak height models for a continuous method of DNA interpretation. Forensic Sci Int Genet 7:296–304

    Article  PubMed  CAS  Google Scholar 

  49. Scientific Working Group on DNA Analysis Methods (SWGDAM). (2015) Guidelines for the validation of probabilistic genotyping systems. https://docs.wixstatic.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf

  50. Moretti TR, Just RS, Kehl SC, Willis LE, Buckleton JS, Bright J, Taylor DA, Onorato AJ (2017) Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet 29:126–144

    Article  PubMed  CAS  Google Scholar 

  51. Vohr SH, Gordon R, Eizenga JM, Erlich HA, Calloway CD, Green RE (2017) A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures. Forensic Sci Int Genet 30:93–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Thermo Fisher Scientific for providing reagents and technical support necessary to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer D. Churchill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLSM 14368 kb)

Supplementary Figure 4

(DOCX 22 kb)

ESM 2

(XLSM 15678 kb)

Supplementary Figure 8

(XLSM 12440 kb)

Supplementary Figure 9

(XLSM 12379 kb)

Supplementary Figure 10

(XLSM 12954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churchill, J.D., Stoljarova, M., King, J.L. et al. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 132, 1263–1272 (2018). https://doi.org/10.1007/s00414-018-1799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1799-3

Keywords

Navigation