Skip to main content
Log in

A SNP panel for identity and kinship testing using massive parallel sequencing

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Within forensic genetics, there is still a need for supplementary DNA marker typing in order to increase the power to solve cases for both identity testing and complex kinship issues. One major disadvantage with current capillary electrophoresis (CE) methods is the limitation in DNA marker multiplex capability. By utilizing massive parallel sequencing (MPS) technology, this capability can, however, be increased. We have designed a customized GeneRead DNASeq SNP panel (Qiagen) of 140 previously published autosomal forensically relevant identity SNPs for analysis using MPS. One single amplification step was followed by library preparation using the GeneRead Library Prep workflow (Qiagen). The sequencing was performed on a MiSeq System (Illumina), and the bioinformatic analyses were done using the software Biomedical Genomics Workbench (CLC Bio, Qiagen). Forty-nine individuals from a Swedish population were genotyped in order to establish genotype frequencies and to evaluate the performance of the assay. The analyses showed to have a balanced coverage among the included loci, and the heterozygous balance showed to have less than 0.5 % outliers. Analyses of dilution series of the 2800M Control DNA gave reproducible results down to 0.2 ng DNA input. In addition, typing of FTA samples and bone samples was performed with promising results. Further studies and optimizations are, however, required for a more detailed evaluation of the performance of degraded and PCR-inhibited forensic samples. In summary, the assay offers a straightforward sample-to-genotype workflow and could be useful to gain information in forensic casework, for both identity testing and in order to solve complex kinship issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For these estimate, haplotype frequencies were used for the loci in LD instead of allele frequencies

References

  1. Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51(2):253–265. doi:10.1111/j.1556-4029.2006.00046.x

    Article  CAS  Google Scholar 

  2. Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24(1):15–26

    PubMed  CAS  Google Scholar 

  3. Parsons TJ, Huel R, Davoren J, Katzmarzyk C, Milos A, Selmanovic A, Smajlovic L, Coble MD, Rizvic A (2007) Application of novel “mini-amplicon” STR multiplexes to high volume casework on degraded skeletal remains. Forensic Sci Int Genet 1(2):175–179. doi:10.1016/j.fsigen.2007.02.003

    Article  Google Scholar 

  4. Phillips C, Gelabert-Besada M, Fernandez-Formoso L, Garcia-Magarinos M, Santos C, Fondevila M, Ballard D, Syndercombe Court D, Carracedo A, Lareu MV (2014) “New turns from old STaRs”: enhancing the capabilities of forensic short tandem repeat analysis. Electrophoresis 35(21–22):3173–3187. doi:10.1002/elps.201400095

    Article  CAS  Google Scholar 

  5. Ge J, Budowle B, Chakraborty R (2011) Choosing relatives for DNA identification of missing persons. J Forensic Sci 56(Suppl 1):S23–28. doi:10.1111/j.1556-4029.2010.01631.x

    Article  Google Scholar 

  6. Nothnagel M, Schmidtke J, Krawczak M (2010) Potentials and limits of pairwise kinship analysis using autosomal short tandem repeat loci. Int J Leg Med 124(3):205–215. doi:10.1007/s00414-009-0413-0

    Article  Google Scholar 

  7. Phillips C, Fondevila M, Garcia-Magarinos M, Rodriguez A, Salas A, Carracedo A, Lareu MV (2008) Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet 2(3):198–204. doi:10.1016/j.fsigen.2008.02.002

    Article  CAS  Google Scholar 

  8. Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89. doi:10.1016/j.fsigen.2015.02.002

    Article  CAS  Google Scholar 

  9. Daniel R, Santos C, Phillips C, Fondevila M, van Oorschot RA, Carracedo A, Lareu MV, McNevin D (2015) A SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Sci Int Genet 14:50–60. doi:10.1016/j.fsigen.2014.08.013

    Article  CAS  Google Scholar 

  10. Børsting C, Morling N (2011) Mutations and/or close relatives? Six case work examples where 49 autosomal SNPs were used as supplementary markers. Forensic Sci Int Genet 5(3):236–241. doi:10.1016/j.fsigen.2010.02.007

    Article  CAS  Google Scholar 

  11. Pakstis AJ, Speed WC, Fang R, Hyland FC, Furtado MR, Kidd JR, Kidd KK (2010) SNPs for a universal individual identification panel. Hum Genet 127(3):315–324. doi:10.1007/s00439-009-0771-1

    Article  Google Scholar 

  12. Tillmar AO, Mostad P (2014) Choosing supplementary markers in forensic casework. Forensic Sci Int Genet 13:128–133. doi:10.1016/j.fsigen.2014.06.019

    Article  CAS  Google Scholar 

  13. Børsting C, Fordyce SL, Olofsson J, Mogensen HS, Morling N (2014) Evaluation of the Ion Torrent™ HID SNP 169-plex: a SNP typing assay developed for human identification by second generation sequencing. Forensic Sci Int Genet 12:144–154. doi:10.1016/j.fsigen.2014.06.004

    Article  CAS  Google Scholar 

  14. Churchill JD, Schmedes SE, King JL, Budowle B (2015) Evaluation of the Illumina(®) beta version ForenSeq™ DNA signature prep kit for use in genetic profiling. Forensic Sci Int Genet 20:20–29. doi:10.1016/j.fsigen.2015.09.009

    Article  CAS  Google Scholar 

  15. Warshauer DH, Davis CP, Holt C, Han Y, Walichiewicz P, Richardson T, Stephens K, Jager A, King J, Budowle B (2015) Massively parallel sequencing of forensically relevant single nucleotide polymorphisms using TruSeq™ forensic amplicon. Int J Legal Med 129(1):31–36. doi:10.1007/s00414-014-1108-8

    Article  Google Scholar 

  16. Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M, Harrison CD, Musgrave-Brown E, Salas A, Syndercombe-Court D, Schneider PM, Carracedo A, Morling N (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27(9):1713–1724. doi:10.1002/elps.200500671

    Article  CAS  Google Scholar 

  17. Lindblom B, Holmlund G (1988) Rapid DNA purification for restriction fragment length polymorphism analysis. Gene Anal Tech 5(5):97–101

    Article  CAS  Google Scholar 

  18. Holmlund G, Lodestad I, Nilsson H, Lindblom B (2006) Experiences from DNA analysis in Sweden for the identification of tsunami victims. Int Congr Ser 1288:744–746

    Article  Google Scholar 

  19. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  20. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  21. Chakraborty R, Stivers DN (1996) Paternity exclusion by DNA markers: effects of paternal mutations. J Forensic Sci 41(4):671–677

    Article  CAS  Google Scholar 

  22. Jones DA (1972) Blood samples: probability of discrimination. J Forensic Sci Soc 12(2):355–359

    Article  CAS  Google Scholar 

  23. Arezi B, Xing W, Sorge JA, Hogrefe HH (2003) Amplification efficiency of thermostable DNA polymerases. Anal Biochem 321(2):226–235

    Article  CAS  Google Scholar 

  24. Eduardoff M, Santos C, de la Puente M, Gross TE, Fondevila M, Strobl C, Sobrino B, Ballard D, Schneider PM, Carracedo Á, Lareu MV, Parson W, Phillips C (2015) Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Forensic Sci Int Genet 17:110–121. doi:10.1016/j.fsigen.2015.04.007

    Article  CAS  Google Scholar 

  25. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. doi:10.1038/nature15393

    Article  CAS  Google Scholar 

  26. Buckleton J, Triggs C (2006) The effect of linkage on the calculation of DNA match probabilities for siblings and half siblings. Forensic Sci Int 160(2–3):193–199. doi:10.1016/j.forsciint.2005.10.004

    Article  CAS  Google Scholar 

  27. Gill P, Phillips C, McGovern C, Bright JA, Buckleton J (2012) An evaluation of potential allelic association between the STRs vWA and D12S391: implications in criminal casework and applications to short pedigrees. Forensic Sci Int Genet 6(4):477–486. doi:10.1016/j.fsigen.2011.11.001

    Article  CAS  Google Scholar 

  28. O’Connor KL, Tillmar AO (2012) Effect of linkage between vWA and D12S391 in kinship analysis. Forensic Sci Int Genet 6(6):840–844. doi:10.1016/j.fsigen.2012.03.008

    Article  CAS  Google Scholar 

  29. Kling D, Egeland T, Tillmar AO (2012) FamLink—a user friendly software for linkage calculations in family genetics. Forensic Sci Int Genet 6(5):616–620. doi:10.1016/j.fsigen.2012.01.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas O. Tillmar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandell, I., Samara, R. & Tillmar, A.O. A SNP panel for identity and kinship testing using massive parallel sequencing. Int J Legal Med 130, 905–914 (2016). https://doi.org/10.1007/s00414-016-1341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1341-4

Keywords

Navigation