Skip to main content

Advertisement

Log in

Pedigree likelihood ratio for lineage markers

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Lineage-based haplotype markers (e.g., Y chromosome STRs and mitochondrial DNA sequences) are important adjunct tools to the autosomal markers for kinship analysis and for specialized kinship applications such as database searching. Traditionally, the prosecution or kinship hypothesis considers the haplotypes in the same lineage and the probability of genotype data given the lineage hypothesis is simply set at 1 if the number of mismatched loci or nucleotides between the questioned person and the references is less than a predefined threshold. In this study, a kinship hypothesis based on a fixed relationship of the questioned person in the reference family is introduced. A graphical model is proposed to calculate the probability of the genotype data given the kinship hypothesis, which is the product of haplotype frequency of the founder in the pedigree and the transmission probability from the founder to all descendants. Proper mutation models are suggested for Y chromosome STRs and mitochondrial DNA sequence variants (i.e., SNPs) to calculate the transmission probability. The methods to infer the genotypes of the untyped individuals in the pedigree and the computational complexity of handling these untyped individuals are also addressed. Lastly, numerical examples of the applications are given to demonstrate the kinship hypothesis and the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chakraborty R (1985) Paternity testing with genetic markers: are Y-linked genes more efficient than autosomal ones? Am J Med Genet 21:297–305

    Article  PubMed  CAS  Google Scholar 

  2. Jobling MA, Pandya A, Tyler-Smith C (1997) The Y chromosome in forensic analysis and paternity testing. Int J Legal Med 110:118–124

    Article  PubMed  CAS  Google Scholar 

  3. Corach D, Risso LF, Marino F, Penacino G, Sala A (2001) Routine Y-STR typing in forensic casework. Forensic Sci Int 118:131–135

    Article  PubMed  CAS  Google Scholar 

  4. Roewer L, Kayser M, de Knijff P, Anslinger K, Betz A, Caglia A et al (2000) A new method for the evaluation of matches in non-recombining genomes: application to Y-chromosomal short tandem repeat (STR) haplotypes in European males. Forensic Sci Int 114:31–43

    Article  PubMed  CAS  Google Scholar 

  5. Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Sci Int 118:116–121

    Article  PubMed  CAS  Google Scholar 

  6. Rolf B, Keil W, Brinkmann B, Roewer L, Fimmers R (2001) Paternity testing using Y-STR haplotypes: assigning a probability for paternity in cases of mutations. Int J Legal Med 115:12–15

    Article  PubMed  CAS  Google Scholar 

  7. Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA et al (2001) DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Forensic Sci Int 124:5–10

    Article  PubMed  CAS  Google Scholar 

  8. Budowle B, Sinha SK, Lee HS, Chakraborty R (2003) Utility of Y-chromosome STR haplotypes in forensic applications. Forensic Sci Rev 15:153–164

    Google Scholar 

  9. Gusmao L, Butler JM, Carracedo A, Gill P, Kayser M, Mayr WR, Morling N, Prinz M, Roewer L, Tyler-Smith C, Schneider PM (2006) DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Forensic Sci Int 157:187–197

    Article  PubMed  CAS  Google Scholar 

  10. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature Genet 12:417–420

    Article  PubMed  CAS  Google Scholar 

  11. Carracedo A, Bär W, Lincoln P, Mayr W, Morling N, Olaisen B, Schneider P, Budowle B, Brinkmann B, Gill P, Holland M, Tully G, Wilson M (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85

    Article  PubMed  CAS  Google Scholar 

  12. Tully GW, Bär BB, Carracedo A, Gill P, Morling N, Parson W, Schneider P (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91

    Article  PubMed  CAS  Google Scholar 

  13. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensic and mitochondrial DNA: application, debates, and foundations. Annu Rev Genom Hum Genet 4:119–141

    Article  CAS  Google Scholar 

  14. Just RS, Loreille OM, Molto JE, Merriwether DA, Woodward SR, Matheson C, Creed J, McGrath SE, Sturk-Andreaggi K, Coble MD, Irwin JA, Ruffman A, Parr RL. Titanic’s unknown child: The critical role of the mitochondrial DNA coding region in a re-identification effort, Forensic Science International: Genetics, In Press, Corrected Proof, Available online 2 April 2010, ISSN 1872–4973. doi: 10.1016/j.fsigen.2010.01.012

  15. Budowle B, Ge J, Aranda X, Planz J, Eisenberg A, Chakraborty R (2009) Texas population substructure and its impact on estimating the rarity of Y STR haplotypes from DNA evidence. J Forensic Sci 54(5):1016–1021

    Article  PubMed  CAS  Google Scholar 

  16. Ge J, Budowle B, Planz JV, Eisenberg AJ, Ballantyne J, Chakraborty R. US forensic Y Chromosome Short Tandem Repeats Database, Legal Medicine, In Press, Corrected Proof, Available online 3 September 2010, ISSN 1344–6223. doi:10.1016/j.legalmed.2010.07.006

  17. Walsh B, Redd A, Hammer M (2008) Joint match probabilities for Y chromosomal and autosomal markers. Forensic Sci Int 174(2):234–238

    Article  PubMed  CAS  Google Scholar 

  18. Budowle B, DiZinno J, Wilson M (1999) Interpretation guidelines for mitochondrial DNA sequencing. 10th International Symposium of Human Identification

  19. Ge J, Budowle B, Chakraborty R (2010) DNA identification by pedigree likelihood ratio accommodating population substructure and mutations, Investigative Genetics, In press

  20. Brenner CH (1997) Symbolic kinship program. Genetics 145:535–542

    PubMed  CAS  Google Scholar 

  21. Hepler AB, Weir BS (2008) Object-oriented Bayesian networks for paternity cases with allelic dependencies. Forensic Sci Int Genet 2:166–175

    Article  PubMed  Google Scholar 

  22. Egeland T, Mostad PF, Mevag B, Stenersen M (2000) Beyond traditional paternity and identification cases: selecting the most probable pedigree. Forensic Sci Int 110:47–59

    Article  PubMed  CAS  Google Scholar 

  23. Christofides N (1975) Graph theory: an algorithmic approach. Academic Press, New York, pp 170–174

    Google Scholar 

  24. Ge J, Budowle B, Aranda XG, Planz JV, Eisenberg AJ, Chakraborty R (2009) Mutation rates at Y chromosome short tandem repeats in Texas populations. Forensic Sci Int Genet 3:179–184

    Article  PubMed  CAS  Google Scholar 

  25. Chakraborty R, Stivers DN, Zhong Y (1996) Estimation of mutation rates from parentage exclusion data: applications to STR and VNTR loci. Mut Res 354:41–48

    Google Scholar 

  26. DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170

    Article  CAS  Google Scholar 

  27. Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetic analysis. Mol Ecol 11:1591–1604

    Article  PubMed  CAS  Google Scholar 

  28. AABB annual report 2008 http://www.aabb.org/sa/facilities/Documents/rtannrpt08.pdf

  29. Sigurðardóttir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P (2000) The mutation rate in the human mtDNA control region. Am J Hum Genet 66(5):1599–1609

    Article  Google Scholar 

  30. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, p 35

    Google Scholar 

  31. Kimura K (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  PubMed  CAS  Google Scholar 

  32. Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222

    Article  PubMed  CAS  Google Scholar 

  33. Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet 67:1029–1032

    Article  PubMed  CAS  Google Scholar 

  34. Howell N, Christy Bogolin Smejkal DA, Mackey PF Chinnery, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670

    Article  PubMed  CAS  Google Scholar 

  35. Meyer S, Weiss G, von Haeseler A (1999) Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110

    PubMed  CAS  Google Scholar 

  36. Budowle B, Wilson MR, DiZinno JA, Stauffer C, Fasano MA, Holland MM, Monson KL (1999) Mitochondrial DNA regions HVI and HVII population data. Forensic Sci Int 103(1):23–35

    Article  PubMed  CAS  Google Scholar 

  37. Balding DJ, Nichols RA (1994) DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Sci Int 64(2–3):125–140

    Article  PubMed  CAS  Google Scholar 

  38. Tully G, Bär W, Brinkmann B, Carracedo A, Gill P, Morling N, Parson W, Schneider P (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124(1):83–91

    Article  PubMed  CAS  Google Scholar 

  39. Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  40. Roewer L, Kayser M, de Knijff P, Anslinger K, Betz A, Caglia A, Corach D, Füredi S, Henke L, Hidding M, Kärgel HJ, Lessig R, Nagy M, Pascali VL, Parson W, Rolf B, Schmitt C, Szibor R, Teifel-Greding J, Krawczak M (2000) A new method for the evaluation of matches in non-recombining genomes: application to Y-chromosomal short tandem repeat (STR) haplotypes in European males. Forensic Sci Int 114:31–43

    Article  PubMed  CAS  Google Scholar 

  41. Krawczak M (2001) Forensic evaluation of Y-STR haplotype matches: a comment. Forensic Sci Int 118:114–115

    Article  PubMed  CAS  Google Scholar 

  42. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464:610–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by USA National Institute of Justice (2009-DN-BX-K188) and National Natural Science Foundation of China (No. 81072511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianye Ge.

Appendix—numerical examples

Appendix—numerical examples

Case 1: Y-STR

Figure 1 is used as an example to explain the Y-STR haplotype-based likelihood ratio calculation. Let H k be the hypothesis that d is the brother of e and nephew of b, and H nk be the hypothesis that d is unrelated to the family of b and e. The likelihood of the family given H k is the sum of the following four likelihoods, each of which is the likelihood of a subpedigree with untyped data determined.

  1. 1.

    a = {11,20} and c = {11,20}

    L1 = Pr({11,20}) × Pr(11 à 11)4 × Pr(20 à 20)3 × Pr(20 à 21)

  2. 2.

    a = {11,20} and c = {11,21}

    L2 = Pr({11,20}) × Pr(11 à 11)4 × Pr(20à 20) × Pr(20 à 21) × Pr(21à 20) × Pr(21 à 21)

  3. 3.

    a = {11,21} and c = {11,20}

    L3 = Pr({11,21}) × Pr(11 à 11)4 × Pr(20 à 20) × Pr(20 à 21) × Pr(21 à 20)2

  4. 4.

    a = {11,21} and c = {11,21}

    L4 = Pr({11,21}) × Pr(11 à 11)4 × Pr(21 à 20)2 × Pr(21 à 21)2

The likelihood of the family given H nk is the product of the haplotype frequency of d, Pr({11,20}), and the likelihood of the family only containing b and e, which is the sum of the following four subpedigrees with inferred genotypes for a and c.

  1. 1.

    a = {11,20} and c = {11,20}

    L1 = Pr({11,20}) × Pr({11,20}) × Pr(11 à 11)4 × Pr(20 à 20)2 × Pr(20 à 21)

  2. 2.

    a = {11,20} and c = {11,21}

    L2 = Pr({11,20}) × Pr({11,20}) × Pr(11 à 11)4 × Pr(20 à 20) × Pr(20 à 21) × Pr(21 à 21)

  3. 3.

    a = {11,21} and c = {11,20}

    L3 = Pr({11,20}) × Pr({11,21}) × Pr(11 à 11)4 × Pr(20 à 21) × Pr(21 à 20)2

  4. 4.

    a = {11,21} and c = {11,21}

    L4 = Pr({11,20}) × Pr({11,21}) × Pr(11 à 11)4 × Pr(21 à 20) × Pr(21 à 21)2

Let the mutation rate μ = 0.002, one-step mutation proportion be 0.95, haplotype frequency of {11,20} be 0.2, and haplotype frequency of {11,21} be 0.3. Pr(11 à 11) = Pr(20 à 20) = Pr(21 à 21) = (1 − μ) and Pr(21 à 20) = Pr(20 à 21) = 1/2μα in terms of Eq. (3). The likelihood ratio is 1.43. To reduce computational time, L 2, L 3, and L 4 in H k and L 3 in H nk, which have higher number of mutation steps than others, can be ignored, and the likelihood is still about 1.43.

Case 2: mtDNA

Figure 2 is used as an example to explain the mtDNA-based likelihood ratio calculation. Let H k be the hypothesis that c is the sister of b, and H nk be the hypothesis that c is unrelated to the family of b. The likelihood of the family given H k is the sum of the following four likelihoods, each of which is the likelihood of a subpedigree with untyped data determined.

  1. 1.

    a = {A, T} and b = {A,T}

    L1 = Pr({A,T}) × Pr(A àA)2 × Pr(T à T)2

  2. 2.

    a = {A, T} and b = {A,C}

    L2 = Pr({A,T}) × Pr(A à A)2 × Pr(T à T) × Pr(T à C)

  3. 3.

    a = {A, C} and b = {A,T}

    L3 = Pr({A,C}) × Pr(A à A)2 × Pr(Cà T)2

  4. 4.

    a = {A, C} and b = {A,C}

    L4 = Pr({A,C}) × Pr(A à A)2 × Pr(C à T) × Pr(C à C)

The likelihood of the family given H nk is the product of the haplotype frequency of c, Pr({A,T}), and the likelihood of the family only containing b, which is the sum of frequencies of two haplotypes, Pr({A,T}) and Pr({A,C}). Let the frequency of {A,T} and {A,C} be 0.2 and 0.3, respectively. Using the mutation rates in Table 1, the likelihood ratio is about 2.0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, J., Eisenberg, A., Yan, J. et al. Pedigree likelihood ratio for lineage markers. Int J Legal Med 125, 519–525 (2011). https://doi.org/10.1007/s00414-010-0514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0514-9

Keywords

Navigation