Skip to main content
Log in

DNA-based identification of forensically important Australian Sarcophagidae (Diptera)

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The utility of the forensically important Sarcophagidae (Diptera) for time since death estimates has been severely limited, as morphological identification is difficult and thermobiological histories are inadequately documented. A molecular identification method involving the sequencing of a 658-bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene from 85 specimens, representing 16 Australian species from varying populations, was evaluated. Nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model and a neighbour-joining phylogenetic tree generated. All species were resolved as reciprocally monophyletic, except Sarcophaga dux. Intraspecific and interspecific variation ranged from 0.000% to 1.499% (SE = 0.044%) and 6.658% to 8.983% (SE = 0.653%), respectively. The COI ‘barcode’ sequence was found to be suitable for the molecular identification of the studied Australian Sarcophagidae: 96.5% of the examined specimens were assigned to the correct species. Given that the sarcophagid fauna is poorly described, it is feasible that the few incorrectly assigned specimens represent cryptic species. The results of this research will be instrumental for implementation of the Australian Sarcophagidae in forensic entomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    Article  CAS  PubMed  Google Scholar 

  2. Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255

    Google Scholar 

  3. Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272

    Article  CAS  PubMed  Google Scholar 

  4. Wells JD, Pape T, Sperling FAH (2001) DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 46:1098–1102

    CAS  PubMed  Google Scholar 

  5. Pape T (1996) Catalogue of the Sarcophagidae of the world (Insecta: Diptera). Associated Publishers, Gainesville

    Google Scholar 

  6. Shewell GE (1987) Sarcophagidae. Research Branch, Agriculture Canada, Ottawa

    Google Scholar 

  7. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577

    CAS  PubMed  Google Scholar 

  8. Byrd JH, Castner JL (2001) Insects of forensic importance. CRC, Boca Raton

    Google Scholar 

  9. Kamal AS (1958) Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera). Ann Entomol Soc Am 51:261–271

    Google Scholar 

  10. Zehner R, Amendt J, Schutt S, Sauer J, Krettek R, Povolny D (2004) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med 118:245–247

    Article  PubMed  Google Scholar 

  11. Wells JD, Williams DW (2007) Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med 121:1–8

    Article  PubMed  Google Scholar 

  12. Nelson LA, Wallman JF, Dowton M (2007) Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 21:44–52

    Article  CAS  PubMed  Google Scholar 

  13. Lopes HdS (1959) A revision of Australian Sarcophagidae (Diptera). Studia Ent 2:33–67

    Google Scholar 

  14. Lopes HdS (1954) Contribution to the knowledge of the Australian sarcophagid flies belonging to the genus "Tricholioproctia" Baranov, 1938 (Diptera). An Acad Bras Cienc 26:234–276

    Google Scholar 

  15. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    CAS  PubMed  Google Scholar 

  16. Platt AR, Woodhall RW, George AL Jr (2007) Improved DNA sequencing quality and efficiency using an optimised fast cycle sequencing protocol. Biotechniques 43:58–62

    Article  CAS  PubMed  Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  18. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  Google Scholar 

  19. Kimura M (1980) A simple model for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  20. Swofford DL (2001) PAUP*-Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer Associates, Sunderland

    Google Scholar 

  21. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J North Am Benthol Soc 24:508–524

    Google Scholar 

  23. Foottit RG, Maw HEL, Von Dohlen CD, Hebert PDN (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Resour 8:1189–1201

    Article  CAS  Google Scholar 

  24. Hajibabaei M, Janzen D, Burns J, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  PubMed  Google Scholar 

  25. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  26. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:s96–s99

    Article  CAS  Google Scholar 

  27. Ward R, Zemalk T, Innes B, Last P, Hebert PDN (2005) DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  CAS  PubMed  Google Scholar 

  28. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103:3657–3662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Melanie Archer, Kelly George, Steve and Ruth McKillup and Lisa Mingari for providing specimens. We are grateful to the Australian Biological Resources Study (ABRS) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Meiklejohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

(DOC 159 kb)

Table 2

(DOC 39 kb)

Table 3

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiklejohn, K.A., Wallman, J.F. & Dowton, M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 125, 27–32 (2011). https://doi.org/10.1007/s00414-009-0395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0395-y

Keywords

Navigation