Skip to main content

Histone, Nucleosome, and Chromatin Structure

  • Chapter
  • First Online:
Fundamentals of Chromatin

Abstract

In organisms ranging from yeast to humans, DNA is packaged inside the nucleus of cells in a polymeric complex called chromatin. The fundamental unit of chromatin is the nucleosome, consisting of a nucleosome core, a linker histone, and a segment of linker DNA. The nucleosome core is constructed from 145 to 147 base pairs of DNA wrapped around an octamer containing two copies of each of the core histone proteins (H2A, H2B, H3, and H4). While its composition has long since been established, more recent X-ray crystallographic investigations of the nucleosome core have painted a high-resolution picture of the histone octamer and its interactions with DNA. The nucleosome core and linker DNA connecting it to an adjacent nucleosome interact with the linker histone (H1/H5). This unit repeats throughout the genome every 160–240 bp, forming long arrays of nucleosomes that progressively condense into higher-order chromatin structures. This chapter details the structure and dynamics of the nucleosome core particle and discusses our current understanding of nucleosome recognition, the linker histone, and the first level of higher-order chromatin structure, the 30nm fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAH:

Bromo-associated homology

bp:

Base pairs

CENP-A:

Centromere protein A

CTD:

C-terminal domain

DNA:

Deoxyribonucleic acid

H1:

Histone H1

H2A:

Histone H2A

H2B:

Histone H2B

H3:

Histone H3

H4:

Histone H4

H5:

Histone H5

HMG:

High mobility group

HMGN2:

High mobility group nucleosomal protein 2

ISW1a:

Imitation SWitch 1a

LANA:

Latency-associated nuclear antigen

PTM(s):

Posttranslational modification(s)

RCC1:

Regulator of chromatin condensation

SHL:

Super-helical location

Sir3:

Silencing information regulator 3

References

  • An W, Leuba SH, van Holde K, Zlatanova J (1998a) Linker histone protects linker DNA on only one side of the core particle and in a sequence-dependent manner. Proc Natl Acad Sci USA 95:3396–3401

    PubMed  CAS  Google Scholar 

  • An W, van Holde K, Zlatanova J (1998b) Linker histone protection of chromatosomes reconstituted on 5S rDNA from Xenopus borealis: a reinvestigation. Nucleic Acids Res 26:4042–4046

    PubMed  CAS  Google Scholar 

  • Anderson JD, Widom J (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 296:979–987

    PubMed  CAS  Google Scholar 

  • Anderson JD, Thåström A, Widom J (2002) Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol Cell Biol 22:7147–7157

    PubMed  CAS  Google Scholar 

  • Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117

    PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA 88:10148–10152

    PubMed  CAS  Google Scholar 

  • Arimura Y, Tachiwana H, Oda T, Sato M, Kurumizaka H (2012) Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51:3302–3309

    PubMed  CAS  Google Scholar 

  • Armache K-J, Garlick JD, Canzio D, Narlikar GJ, Kingston RE (2011) Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334:977–982

    PubMed  CAS  Google Scholar 

  • Ausio J, Dong F, Van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463

    PubMed  CAS  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of the pneumococcal types: inductions of transformation by a desoxyribonucleic acid fraction from pneumococcus type III. J Exp Med 79:137–158

    PubMed  CAS  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    PubMed  CAS  Google Scholar 

  • Bao Y, Konesky K, Park Y-J, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23:3314–3324

    PubMed  CAS  Google Scholar 

  • Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM (2006) The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311:856–861

    PubMed  CAS  Google Scholar 

  • Black BE, Cleveland DW (2011) Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144:471–479

    PubMed  CAS  Google Scholar 

  • Brown DT, Izard T, Misteli T (2006) Mapping the interaction surface of linker histone H10 with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol 13:250–255

    PubMed  CAS  Google Scholar 

  • Buning R, van Noort J (2010) Single-pair FRET experiments on nucleosome conformational dynamics. Biochimie 92:1729–1740

    PubMed  CAS  Google Scholar 

  • Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, Bustin M (2004) Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol Cell Biol 24:4321–4328

    PubMed  CAS  Google Scholar 

  • Chakravarthy S, Luger K (2006) The histone variant macro-H2A preferentially forms “hybrid nucleosomes”. J Biol Chem 281:25522–25531

    PubMed  CAS  Google Scholar 

  • Chua EYD, Vasudevan D, Davey GE, Wu B, Davey CA (2012) The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 40(13):6338–6352

    PubMed  CAS  Google Scholar 

  • Clapier CR, Chakravarthy S, Petosa C, Fernández-Tornero C, Luger K, Müller CW (2008) Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer. Proteins 71:1–7

    PubMed  CAS  Google Scholar 

  • Clark RJ, Felsenfeld G (1971) Structure of chromatin. Nat New Biol 229:101–106

    PubMed  CAS  Google Scholar 

  • Clore GM, Gronenborn AM, Nilges M, Sukumaran DK, Zarbock J (1987) The polypeptide fold of the globular domain of histone H5 in solution. A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J 6:1833–1842

    PubMed  CAS  Google Scholar 

  • D’Anna JA, Isenberg I (1974) Interactions of histone LAK (f2a2) with histones KAS (f2b) and GRK (f2a1). Biochemistry 13:2098–2104

    PubMed  Google Scholar 

  • Dahm R (2005) Friedrich Miescher and the discovery of DNA. Dev Biol 278(2):274–288

    PubMed  CAS  Google Scholar 

  • Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5:e218

    PubMed  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    PubMed  CAS  Google Scholar 

  • Dechassa ML, Wyns K, Li M, Hall MA, Wang MD, Luger K (2011) Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2:313

    PubMed  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96

    PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    PubMed  CAS  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105:19732–19737

    PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897–1901

    PubMed  CAS  Google Scholar 

  • Flaus A, Luger K, Tan S, Richmond TJ (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci USA 93:1370–1375

    PubMed  CAS  Google Scholar 

  • Franklin RE, Goslin RG (1953) Molecular configuration in sodium thymonucleate. Nature 171:740–741

    PubMed  CAS  Google Scholar 

  • Furuyama T, Henikoff S (2009) Centromeric nucleosomes induce positive DNA supercoils. Cell 138:104–113

    PubMed  CAS  Google Scholar 

  • Graziano V, Gerchman SE, Wonacott AJ, Sweet RM, Wells JR, White SW, Ramakrishnan V (1990) Crystallization of the globular domain of histone H5. J Mol Biol 212:253–257

    PubMed  CAS  Google Scholar 

  • Grigoryev SA, Arya G, Correll S, Woodcock CL, Schlick T (2009) Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc Natl Acad Sci USA 106:13317–13322

    PubMed  CAS  Google Scholar 

  • Hansen JC, Lu X, Ross ED, Woody RW (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem 281:1853–1856

    PubMed  CAS  Google Scholar 

  • Happel N, Doenecke D (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431:1–12

    PubMed  CAS  Google Scholar 

  • Harp JM, Hanson BL, Timm DE, Bunick GJ (2000) Asymmetries in the nucleosome core particle at 2.5 A resolution. Acta Crystallogr D Biol Crystallogr 56:1513–1534

    PubMed  CAS  Google Scholar 

  • Hayes JJ, Wolffe AP (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc Natl Acad Sci USA 90:6415–6419

    PubMed  CAS  Google Scholar 

  • Hayes JJ, Pruss D, Wolffe AP (1994) Contacts of the globular domain of histone H5 and core histones with DNA in a “chromatosome”. Proc Natl Acad Sci USA 91:7817–7821

    PubMed  CAS  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20:320–326

    PubMed  CAS  Google Scholar 

  • Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52:504–510

    PubMed  CAS  Google Scholar 

  • Hoch DA, Stratton JJ, Gloss LM (2007) Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z. J Mol Biol 371:971–988

    PubMed  CAS  Google Scholar 

  • Hutcheon T, Dixon GH, Levy-Wilson B (1980) Transcriptionally active mononucleosomes from trout testis are heterogeneous in composition. J Biol Chem 255:681–685

    PubMed  CAS  Google Scholar 

  • Huynh VAT, Robinson PJJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    PubMed  CAS  Google Scholar 

  • Jackson V (1990) In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–731

    PubMed  CAS  Google Scholar 

  • Jackson V, Chalkley R (1985) Histone synthesis and deposition in the G1 and S phases of hepatoma tissue culture cells. Biochemistry 24:6921–6930

    PubMed  CAS  Google Scholar 

  • Joti Y, Hikima T, Nishino Y, Kamda F, Hihara S, Takata H, Ishikawa T, Maeshima K (2012) Chromosomes without a 30-nm chromatin fiber. Nucleus 3:404–410

    PubMed  Google Scholar 

  • Kan P-Y, Lu X, Hansen JC, Hayes JJ (2007) The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol Cell Biol 27:2084–2091

    PubMed  CAS  Google Scholar 

  • Kato H, van Ingen H, Zhou B-R, Feng H, Bustin M, Kay LE, Bai Y (2011) Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc Natl Acad Sci USA 108:12283–12288

    PubMed  CAS  Google Scholar 

  • Kelley RI (1973) Isolation of a histone IIb1-IIb2 complex. Biochem Biophys Res Commun 54:1588–1594

    PubMed  CAS  Google Scholar 

  • Kimura H, Cook PR (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153:1341–1353

    PubMed  CAS  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    PubMed  CAS  Google Scholar 

  • Kornberg RD, Thomas JO (1974) Chromatin structure: oligomers of the histones. Science 184:865–868

    PubMed  CAS  Google Scholar 

  • Kossel A (1884) Ueber einen peptoartigen bestandheil des zell- kerns. Z Physiol Chem 8:511–515

    Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  • Kruithof M, Chien F-T, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534–540

    PubMed  CAS  Google Scholar 

  • Langmore JP, Schutt C (1980) The higher order structure of chicken erythrocyte chromosomes in vivo. Nature 288:620–622

    PubMed  CAS  Google Scholar 

  • Lee KM, Hayes JJ (1997) The N-terminal tail of histone H2A binds to two distinct sites within the nucleosome core. Proc Natl Acad Sci USA 94:8959–8964

    PubMed  CAS  Google Scholar 

  • Lever MA, Th’ng JP, Sun X, Hendzel MJ (2000) Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408:873–876

    PubMed  CAS  Google Scholar 

  • Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186

    PubMed  CAS  Google Scholar 

  • Locklear L, Ridsdale JA, Bazett-Jones DP, Davie JR (1990) Ultrastructure of transcriptionally competent chromatin. Nucleic Acids Res 18:7015–7024

    PubMed  CAS  Google Scholar 

  • Lu X, Hansen JC (2004) Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 279:8701–8707

    PubMed  CAS  Google Scholar 

  • Lu X, Hamkalo B, Parseghian MH, Hansen JC (2009) Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48:164–172

    PubMed  CAS  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  • Luger K, Mäder A, Sargent DF, Richmond TJ (2000) The atomic structure of the nucleosome core particle. J Biomol Struct Dyn 17:185–188

    PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    PubMed  CAS  Google Scholar 

  • Maeshima K, Hihara S, Eltsov M (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol 22:291–297

    PubMed  CAS  Google Scholar 

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566

    PubMed  CAS  Google Scholar 

  • Marsden MP, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858

    PubMed  CAS  Google Scholar 

  • Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (2002) The human and mouse replication-dependent histone genes. Genomics 80:487–498

    PubMed  CAS  Google Scholar 

  • McBryant SJ, Lu X, Hansen JC (2010) Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 20:519–528

    PubMed  CAS  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156

    PubMed  CAS  Google Scholar 

  • McGhee JD, Nickol JM, Felsenfeld G, Rau DC (1983) Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33:831–841

    PubMed  CAS  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H. Freeman, New York, NY, 1100

    Google Scholar 

  • Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163

    PubMed  CAS  Google Scholar 

  • Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31:1644–1653

    PubMed  CAS  Google Scholar 

  • Noll M, Kornberg RD (1977) Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol 109:393–404

    PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE (1973) Spheroid chromatin units (v bodies). J Cell Biol 59:A252

    Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    PubMed  CAS  Google Scholar 

  • Ong MS, Richmond TJ, Davey CA (2007) DNA stretching and extreme kinking in the nucleosome core. J Mol Biol 368:1067–1074

    PubMed  CAS  Google Scholar 

  • Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861

    PubMed  CAS  Google Scholar 

  • Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2(1):72–75

    PubMed  CAS  Google Scholar 

  • Poirier MG, Bussiek M, Langowski J, Widom J (2008) Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 379:772–786

    PubMed  CAS  Google Scholar 

  • Poirier MG, Oh E, Tims HS, Widom J (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16:938–944

    PubMed  CAS  Google Scholar 

  • Pruss D, Bartholomew B, Persinger J, Hayes J, Arents G, Moudrianakis EN, Wolffe AP (1996) An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274:614–617

    PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362:219–223

    PubMed  CAS  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 Å resolution. Nature 311:532–537

    PubMed  CAS  Google Scholar 

  • Roark DE, Geoghegan TE, Keller GH (1974) A two-subunit histone complex from calf thymus. Biochem Biophys Res Commun 59:542–547

    PubMed  CAS  Google Scholar 

  • Robinson PJJ, Fairall L, Huynh VAT, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506–6511

    PubMed  CAS  Google Scholar 

  • Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    PubMed  CAS  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    PubMed  CAS  Google Scholar 

  • Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25:335–343

    PubMed  CAS  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore IK, Wang J-PZ, Widom J (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun J-M, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    PubMed  CAS  Google Scholar 

  • Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ, Poirier MG (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci USA 108:12711–12716

    PubMed  CAS  Google Scholar 

  • Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531

    PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Felsenfeld G (1975) A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry 14:2915–2920

    PubMed  CAS  Google Scholar 

  • Stedman E, Stedman E (1951) The basic proteins of cell nuclei. Philos Trans R Soc Lond B 235:565–595

    Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7:1121–1124

    PubMed  CAS  Google Scholar 

  • Syed SH, Goutte-Gattat D, Becker N, Meyer S, Shukla MS, Hayes JJ, Everaers R, Angelov D, Bednar J, Dimitrov S (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci USA 107:9620–9625

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park S-Y, Kimura H, Kurumizaka H (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235

    PubMed  CAS  Google Scholar 

  • Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    PubMed  CAS  Google Scholar 

  • Th’ng JPH, Sung R, Ye M, Hendzel MJ (2005) H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J Biol Chem 280:27809–27814

    PubMed  Google Scholar 

  • The PyMOL Molecular Graphics System, version 1.5 Schrödinger, LLC

    Google Scholar 

  • Thiriet C, Hayes JJ (2005) Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 19:677–682

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    PubMed  CAS  Google Scholar 

  • Tsunaka Y (2005) Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res 33:3424–3434

    PubMed  CAS  Google Scholar 

  • Van Holde KE (1989) Chromatin, 1st edn. Springer, New York, NY, 497

    Google Scholar 

  • Van Holde KE, Sahasrabuddhe CG, Shaw BR (1974) A model for particulate structure in chromatin. Nucleic Acids Res 1:1579–1586

    PubMed  Google Scholar 

  • Vasudevan D, Chua EYD, Davey CA (2010) Crystal structures of nucleosome core particles containing the “601” strong positioning sequence. J Mol Biol 403:1–10

    PubMed  CAS  Google Scholar 

  • Vila R, Ponte I, Jiménez MA, Rico M, Suau P (2000) A helix-turn motif in the C-terminal domain of histone H1. Protein Sci 9:627–636

    PubMed  CAS  Google Scholar 

  • Vila R, Ponte I, Collado M, Arrondo JL, Suau P (2001a) Induction of secondary structure in a COOH-terminal peptide of histone H1 by interaction with the DNA: an infrared spectroscopy study. J Biol Chem 276:30898–30903

    PubMed  CAS  Google Scholar 

  • Vila R, Ponte I, Collado M, Arrondo JL, Jiménez MA, Rico M, Suau P (2001b) DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1. J Biol Chem 276:46429–46435

    PubMed  CAS  Google Scholar 

  • Wang X, Hayes JJ (2006) Physical methods used to study core histone tail structures and interactions in solution. Biochem Cell Biol 84:578–588

    PubMed  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    PubMed  CAS  Google Scholar 

  • White CL, Suto RK, Luger K (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20:5207–5218

    PubMed  CAS  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300Å chromatin filament: X-ray diffraction from oriented samples. Cell 43:207–213

    PubMed  CAS  Google Scholar 

  • Wilkins MH, Stokes AR, Wilson HR (1953) Molecular structure of deoxypentose nucleic acids. Nature 171:738–740

    PubMed  CAS  Google Scholar 

  • Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233–248

    PubMed  CAS  Google Scholar 

  • Winter S, Fischle W (2010) Epigenetic markers and their cross-talk. Essays Biochem 48:45–61

    PubMed  CAS  Google Scholar 

  • Wong H, Victor J-M, Mozziconacci J (2007) An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS One 2:e877

    PubMed  Google Scholar 

  • Woodcock CLF (1973) Ultrastructure of inactive chromatin. J Cell Biol 59:A368

    Google Scholar 

  • Woodcock CL, Safer JP, Stanchfield JE (1976) Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp Cell Res 97:101–110

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42–52

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    PubMed  CAS  Google Scholar 

  • Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci USA 78:1461–1465

    PubMed  CAS  Google Scholar 

  • Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453

    PubMed  CAS  Google Scholar 

  • Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:564–578

    PubMed  CAS  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 280:33552–33557

    PubMed  CAS  Google Scholar 

  • Zhou YB, Gerchman SE, Ramakrishnan V, Travers A, Muyldermans S (1998) Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395:402–405

    PubMed  CAS  Google Scholar 

  • Zhou Z, Feng H, Zhou B-R, Ghirlando R, Hu K, Zwolak A, Miller Jenkins LM, Xiao H, Tjandra N, Wu C, Bai Y (2011) Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472:234–237

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Bishop TC, Victor J-M, Jackson V, van Holde K (2009) The nucleosome family: dynamic and growing. Structure 17:160–171

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tim Richmond for providing the coordinates for his two-start model of the 30 nm fiber. We would also like to thank Phil Robinson and Daniela Rhodes for providing coordinates for their one-start model of the 30 nm fiber. Robert McGinty is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2107-12). This work was also supported by Public Health Service grant GM-088236 from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McGinty, R.K., Tan, S. (2014). Histone, Nucleosome, and Chromatin Structure. In: Workman, J., Abmayr, S. (eds) Fundamentals of Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8624-4_1

Download citation

Publish with us

Policies and ethics