Skip to main content
Log in

Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhmedov A, Gross B, Jessberger R (1999) Mammalian smc3 c-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending. J Biol Chem 274(53):38216–38224

    Article  PubMed  CAS  Google Scholar 

  • Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD (1998) BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 19:254–256

    Article  PubMed  CAS  Google Scholar 

  • Baarends W, Hoogerbrugge J, Roest H, Ooms M, Vreeburg J, Hoeijmakers J, Grootegoed J (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207(2):322–333

    Article  PubMed  CAS  Google Scholar 

  • Baarends W, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers J, de Boer P, Grootegoed J (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25(3):1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Bannister L, Schimenti J (2004) Homologous recombinational repair proteins in mouse meiosis. Cytogenet Genome Res 107(3–4):191–200

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne P, Mahadevaiah S, Turner J (2007) The management of DNA double-strand breaks in mitotic G(2), and in mammalian meiosis viewed from a mitotic G(2) perspective. Bioessays 29(10):974–986

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne P, Mahadevaiah S, Turner J (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Chandley A, Jones R, Dott H, Allen W, Short R (1974) Meiosis in interspecific equine hybrids. I. The male mule (Equus asinus × E. caballus) and hinny (E. caballus × E. asinus). Cytogenet Cell Genet 13(4):330–341

    Article  PubMed  CAS  Google Scholar 

  • De La Fuente R, Viveiros M, Burns K, Adashi E, Matzuk M, Eppig J (2004) Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 275(2):447–458

    Article  Google Scholar 

  • De La Fuente R, Baumann C, Fan T, Schmidtmann A, Dobrinski I, Muegge K (2006) Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nat Cell Biol 8(12):1448–1454

    Article  Google Scholar 

  • de la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja JA, Rufas JS, Page J (2007) Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet 3(11):e198

    Article  PubMed  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113(Pt 4):673–682

    PubMed  CAS  Google Scholar 

  • Escalier D, Garchon H (2000) XMR is associated with the asynapsed segments of sex chromosomes in the XY body of mouse primary spermatocytes. Chromosoma 109(4):259–265

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah S, Celeste A, Romanienko P, Camerini-Otero R, Bonner W, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4(4):497–508

    Article  PubMed  CAS  Google Scholar 

  • Franco M, Sciurano R, Solari A (2007) Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res 15(6):815–824

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L, Anderson L, Wienberg J, Ashley T (2002) Male mouse recombination maps for each autosome identified by chromosome painting. Am J Hum Genet 71(6):1353–1368

    Article  PubMed  CAS  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Handel M, Hunt P (1992) Sex-chromosome pairing and activity during mammalian meiosis. BioEssays 14(12):817–822

    Article  PubMed  CAS  Google Scholar 

  • Hawley RS (2003) The human y chromosome: rumors of its death have been greatly exaggerated. Cell 113(7):825–828

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Fender S (2003) Molecular aspects of XY body formation. Cytogenet Genome Res 103(3–4):245–255

    PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Singh P, Motzkus D (2000) The murine heterochromatin protein M31 is associated with the chromocenter in round spermatids and is a component of mature spermatozoa. Exp Cell Res 254(1):72–79

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Czirr E, Radde R, Turner J, Mahadevaiah S, Pehrson J, Burgoyne P (2004) Localisation of histone macroH2A1.2 to the XY-body is not a response to the presence of asynapsed chromosome axes. J Cell Sci 117(Pt 2):189–198

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 3(10):767–778

    Article  PubMed  CAS  Google Scholar 

  • Khalil AM, Driscoll DJ (2006) Histone H3 lysine 4 dimethylation is enriched on the inactive sex chromosomes in male meiosis but absent on the inactive X in female somatic cells. Cytogenet Genome Res 112(1–2):11–15

    Article  PubMed  CAS  Google Scholar 

  • Khalil A, Driscoll D (2007) Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2(2):114–118

    Article  PubMed  Google Scholar 

  • Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA 101(47):16583–16587

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19(11):1269–1287

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27(3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Manders EEM, Verbeek FJ, Aten JA (1993) Measurement of co-localisation of objects in dual-colour confocal images. J Microsc 169:375–382

    Google Scholar 

  • Monesi V (1965) Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 17(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, Lee JT (2009) XY and ZW: is meiotic sex chromosome inactivation the rule in evolution? PLoS Genet 5(5):e1000493

    Article  PubMed  Google Scholar 

  • Namekawa S, VandeBerg J, McCarrey J, Lee J (2007) Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci USA 104(23):9730–9735

    Article  PubMed  CAS  Google Scholar 

  • Page J, Berrios S, Rufas J, Parra M, Suja J, Heyting C, Fernandez-Donoso R (2003) The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J Cell Sci 116(3):551–560

    Article  PubMed  CAS  Google Scholar 

  • Page J, de la Fuente R, Gómez R, Calvente A, Viera A, Parra M, Santos J, Berríos S, Fernández-Donoso R, Suja J, Rufas J (2006) Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma 115(3):250–259

    Article  PubMed  Google Scholar 

  • Pelttari J, Hoja M, Yuan L, Liu J, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero J, Heyting C, Hoog C (2001) A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21(16):5667–5677

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11(11):1826–1832

    PubMed  CAS  Google Scholar 

  • Piras F, Nergadze S, Poletto V, Cerutti F, Ryder O, Leeb T, Raimondi E, Giulotto E (2009) Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Cytogenet Genome Res 126(1–2):165–172

    Article  PubMed  CAS  Google Scholar 

  • Power M, Gustavsson I, Switonski M, Ploen L (1992) Synaptonemal complex analysis of an autosomal trisomy in the horse. Cytogenet Cell Genet 61(3):202–207

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, Martinez A, Martinez AC, Hulten MA, Barbero JL (2004) Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12(3):197–213

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Jessberger R (2006) Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma 115(3):235–240

    Article  PubMed  CAS  Google Scholar 

  • Richler C, Ast G, Goitein R, Wahrman J, Sperling R, Sperling J (1994) Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei. Mol Biol Cell 5(12):1341–1352

    PubMed  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2(8):621–627

    Article  PubMed  CAS  Google Scholar 

  • Schoenmakers S, Wassenaar E, Hoogerbrugge J, Laven J, Grootegoed J, Baarends W (2009) Female meiotic sex chromosome inactivation in chicken. PLoS Genet 5(5):e1000466

    Article  PubMed  Google Scholar 

  • Sciurano R, Rahn M, Rey-Valzacchi G, Solari A (2007) The asynaptic chromatin in spermatocytes of translocation carriers contains the histone variant gamma-H2AX and associates with the XY body. Hum Reprod 22(1):142–150

    Article  PubMed  CAS  Google Scholar 

  • Scott I, Long S (1980) An examination of chromosomes in the stallion (Equus caballus) during meiosis. Cytogenet Cell Genet 26(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Solari A (1970a) The behaviour of chromosomal axes during diplotene in mouse spermatocytes. Chromosoma 31(2):217–230

    Article  PubMed  CAS  Google Scholar 

  • Solari A (1970b) The spatial relationship of the X and Y chromosomes during meiotic prophase in mouse spermatocytes. Chromosoma 29(2):217–236

    Article  PubMed  CAS  Google Scholar 

  • Tres LL (1977) Extensive pairing of the XY bivalent in mouse spermatocytes as visualized by whole-mount electron microscopy. J Cell Sci 25(1):1–15

    PubMed  CAS  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134(10):1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli G, Barrett J, Burgoyne P, Deng C (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14(23):2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Mahadevaiah S, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng C, Burgoyne P (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37(1):41–47

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10(4):521–529

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39(2):251–258

    Article  PubMed  Google Scholar 

  • Wade C, Giulotto E, Sigurdsson S, Zoli M, Gnerre S et al (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326(5954):865–867

    Article  PubMed  CAS  Google Scholar 

  • White GE, Erickson HP (2006) Sequence divergence of coiled coils—structural rods, myosin filament packing, and the extraordinary conservation of cohesins. J Struct Biol 154(2):111–121

    Article  PubMed  CAS  Google Scholar 

  • Wichman H, Payne C, Ryder O, Hamilton M, Maltbie M, Baker R (1991) Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 82(5):369–377

    PubMed  CAS  Google Scholar 

  • Xu X, Aprelikova O, Moens P, Deng C, Furth P (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130(9):2001–2012

    Article  PubMed  CAS  Google Scholar 

  • Zickler D (2006) From early homologue recognition to synaptonemal complex formation. Chromosoma 115(3):158–174

    Article  PubMed  Google Scholar 

  • Zinchuk V, Zinchuk O (2008) Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr Protoc Cell Biol 39:4.19.1–4.19.16

  • Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40:101–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. W. Earnshaw for the generous gift of human CREST antiserum and Drs. Michaela Kristula and Lauren Greene (Department of Clinical Studies, University of Pennsylvania) for providing equine testicular tissue. We are grateful to E. Amenkhienan for helping with preliminary data collection and to Dr. M.A. Handel for comments and critical reading of the manuscript. This research was supported by research grants from the University of Pennsylvania Research Foundation and the National Institutes of Health NIH 2RO1HDO42740 to R. De La Fuente. The support from McCabe Foundation (M. M. Viveiros) and the Havemeyer Foundation to S. M. McDonnell is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria M. Viveiros or Rabindranath De La Fuente.

Additional information

Communicated by S. Keeney

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

a Single channel images of the pachytene spermatocyte in Fig. 4c to illustrate the degree of signal overlap of SMC3 (green) and γH2AX (red) at chromosome cores (arrow and inset). b Immunochemical detection of RNA polymerase II (red) during meiotic progression in equine (upper panel) and mouse (lower panel) spermatocytes. Distinct RNA Pol II foci (arrow) were detected at the sex chromosome axes in the majority (>65%) of equine pachytene stage spermatocytes and in a small proportion (15%) of mouse spermatocytes (arrow). c Fluorescence in situ hybridization using an X chromosome-specific probe (red) reveals the extent of chromatin expansion (outlined) beyond sex chromosome cores (green) in equine pachytene spermatocytes. d RAD51 foci (red) associated with axial elements in fully synapsed mid-pachytene stage spermatocytes (lower cell, bold arrow) become resolved by the diplotene stage (upper cell) of meiotic prophase I. The sex chromosome bivalent shows a diffuse RAD51 signal with one to two foci associated with the PAR. DNA is shown in blue and SMC3 in green. Scale bar = 10 μm (GIF 424 kb)

High Resolution Image (TIFF 4378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, C., Daly, C.M., McDonnell, S.M. et al. Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis. Chromosoma 120, 227–244 (2011). https://doi.org/10.1007/s00412-010-0306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0306-5

Keywords

Navigation