Skip to main content
Log in

Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    Article  CAS  PubMed  Google Scholar 

  • Arora RK (1977) ‘Job’s tears’(Coix lacryma-jobi), a minor food and fodder crop of North-eastern India. Economic Botany 31:358–366

    Google Scholar 

  • Barve SS, Spare AB (1986) Mono-trisomic in Coix gigantea. Curr Sci 55:660–661

    Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromerespecific retrotransposon. Plant Cell 14:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Christopher J, Benny J (1990) Cytology of a new Hexaploid cyto-type of Coix lacryma-jobi Linn. Cytologia 55:57–60

    Google Scholar 

  • Clayton WD (1981) Notes on tribe Andropogoneae (Graminea). Rew Bulletin 35:813–818

    Google Scholar 

  • Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5:e218

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald DJ, Dryden GL, Bronson EC, Williams JS, Anderson JN (1994) Conserved patterns of bending in satellite and nucleosome positioning DNA. J Biol Chem 269:21303–21314

    CAS  PubMed  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Li DY, Li YC, Xue YG, Hu ZL, Song YC (2004) Cytogenetic identification and analysis of a new hexaploid Coix aquatica Roxb. cyto-type. Acta Botanica Sinica 46:724–729

    CAS  Google Scholar 

  • Henikoff S (2002) Near the edge of a chromosome’s ‘black hole’. Trends Genet 18:165–167

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Dalal Y (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev 15:177–184

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Brandes A, Pich U, Manteuffel R, Schubert I (1996) Molecular-cytogenetic characterization of a higher plant centromere/kinetochore complex. Theor Appl Genet 93:477–484

    Article  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  CAS  PubMed  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of Fiber-FISH in genome analysis of Arabidopsis thaliana. Genome 41:566–572

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Dong F, Jiang J (1999) Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci 92:4487–4491

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Kong XY, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69

    Article  CAS  PubMed  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  CAS  PubMed  Google Scholar 

  • Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Ohtsubo H, Horiuchi T, Ohtsubo E (1999) Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol Gen Genet 260:593–602

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Bio 5:239

    Article  Google Scholar 

  • Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325

    CAS  PubMed  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  CAS  PubMed  Google Scholar 

  • Li YX, Kirby ML (2003) Coordinated and conserved expression of alphoid repeat and alphoid repeat-tagged coding sequences. Dev Dynamics 228:72–81

    Article  CAS  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in heterochromatin of Brassica rapa. Mol Cells 19:436–444

    CAS  PubMed  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Jacobus BH, SanMiguel P, Walling JG, Yuan Y, Shoemaker RC, Young ND, Jackson SA (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yue W, Li D, Wang R, Kong XY, Kun Lu, Wang GX, Dong YS, Jin WW, Zhang XY (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Zuo ZM (1996) Detection and identification of Coix aquatica species in Guangxi. Guangxi Agric Sci 1:18–20

    Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Bayes JJ (2006) Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. Biochem Soc Trans 34:569–573

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Balbás A, Rodríguez-Campos A, García-Ramírez M, Sainz J, Carrera P, Aymamí J, Azorín F (1990) Satellite DNAs contain sequences that induce curvature. Biochemistry 29:2342–2348

    Article  PubMed  Google Scholar 

  • Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623

    CAS  PubMed  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Ð (2004) Conserved patterns in the evolution of Tribolium satellite DNAs. Gene 332:169–177

    Article  CAS  PubMed  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Ð (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    Article  CAS  PubMed  Google Scholar 

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7:1045–1053

    CAS  PubMed  Google Scholar 

  • Schubert I (1998) Late-replicating satellites: something for all centromeres? Trends Genet 14:385–387

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop-Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253:247–252

    Article  CAS  PubMed  Google Scholar 

  • Ugarkovic DL, Plohl M (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21:5955–5959

    Article  CAS  PubMed  Google Scholar 

  • Ugarkovic DL, Plohl M, Lucijanic-Justic V, Borstnik B (1992) Detection of satellite DNA in Palorus ratzeburgii: analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA. Biochimie 74:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Ugarkovic DL, Podnar M, Plohl M (1996) Satellite DNA of the red flour beetle Tribolium castaneum-comparative study of satellites from the genus Tribolium. Mol Biol Evol 13:1059–1066

    CAS  PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  CAS  PubMed  Google Scholar 

  • Woo JH, Li D, Wilsbach K, Orita H, Coulter J, Tully E, Kwon TK, Xu S, Gabrielson E (2007) Coix seed extract, a commonly used treatment for cancer in China, inhibits NFkappaB and protein kinase C signaling. Cancer Biol Ther 6:2005–2011

    Article  PubMed  Google Scholar 

  • Yang TJ, Lee S, Chang SB, Yu Y, de Jong H, Wing RA (2005) In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114:103–117

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. J.S. Li (China Agricultural University) for supplying the seeds of Coix. This research was supported by grant (30771208) from the National Science Foundation, State Key Basic Research and Development Plan of China (973; 2009CB118400), and National Transgenic Research Program of China (2008ZX08009-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyong Zhang or Weiwei Jin.

Additional information

Communicated by: I. Schubert

Yonghua Han and Guixiang Wang made an equal contribution to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Analysis of chromosome distribution and insert sizes of representative BAC clones 9-6-12 and 9-18-39. (a) FISH analysis of BAC 9-6-12. The signals dispersed along all chromosomes with an increased concentration around centromeric regions. (b) FISH analysis of BAC 9-18-39. The signals were exclusively detected in centromeres. (c) Insert sizes and fingerprint of BAC 9-6-12(12) and 9-18-39(39). After restriction of NotI and removing the 7.5 kb-length vector, the insert sizes were ∼130 and 110 kb, respectively. BAC 12 and 39 were not in the same contig as revealed in fingerprint by restriction with HindIII (GIF 72 kb)

High resolution image (TIFF 4353 kb)

Supplementary Fig. 2

Sequence comparison between 20 variant monomers of the 153-bp satellite repeat. Sequence conservation is indicated by background shading, where black represents 100% identity, dark gray represents at least 80%, and light gray represents at least 60%. Asterisks represent nucleotide position 10, 30, 50, and 70, respectively (GIF 1261 kb)

High resolution image (TIFF 576 kb)

Supplementary Fig. 3

Highly conserved sequence motifs identified in the LTRs of the centromere-specific retrotransposons in the grass species were found in the LTRs of CRC (GIF 5275 kb)

High resolution image (TIFF 6680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Wang, G., Liu, Z. et al. Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative. Chromosoma 119, 89–98 (2010). https://doi.org/10.1007/s00412-009-0239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0239-z

Keywords

Navigation