Skip to main content

Introduction to Chromosome

  • Chapter
  • First Online:
Chromosome Structure and Aberrations
  • 1847 Accesses

Abstract

Chromosomes are vehicles of inheritance and reside inside the nucleus. First named so by Waldeyer-Hartz in 1988, the chromosomes were associated with physical basis of heredity by Weissmann in 1892 and then vehicles of genetic information or genes by Boveri and Sutton in 1902. Avery, MacLeod, and McCarty provided convincing evidence in 1944 that the genetic material in chromosomes is made up of deoxyribonucleic acid (DNA). Watson and Crick, based on the X-ray diffraction data of Wilkins and Franklin, proposed double helical structure of DNA, in which the genetic information resides in the form of triplet codons. The prokaryotic chromosomes are in the form of naked circular DNA molecules. In eukaryotes, however, the DNA in association with histone proteins forms 10 nm fiber which is variously coiled to form a thick and highly condensed chromosome. The number and structure of chromosomal set is unique for each species of animals and plants. Any deviation in the number or rearrangement of segments of chromosomes causes aberrations, which are manifested in a variety of abnormal phenotypes and/or physiological disorders. The development of understanding of structure, chemical composition, and functions of different segments of chromosomes is intimately related with the refinement of techniques used for studying chromosomes. The techniques like banding pattern, in situ hybridization, and its ever-increasing variety of modifications are broadening our understanding of chromosomes and opening new avenues for increasing productivity by genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Additional Reading

  • Arnold J (1879) Uber feinere Struktur der Zellen unter normalen und pathologischen verhaeltnissen. Virchows Arch Pathol Anat 77:181–206

    Article  Google Scholar 

  • Bauman JG, Wiegant J, Borst P, van Dujin P (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp Cell Res 128:485–490

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Hendrick BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  PubMed  Google Scholar 

  • Capanna E (2000) Chromosome yesterday: a century of chromosome studies. In: Almo E, Redi CA (eds) Chromosome today, vol 13. Birkhaeuser Verlag, Basel, pp 3–22

    Chapter  Google Scholar 

  • Caspersson T (1934) Durchfiltrierung von Thymonucleinsaeure. Biochem Z 270:161–163

    CAS  Google Scholar 

  • Caspersson T (1937) Aufbau der Strukturen des Zellkernes. Acta Med Skand 73(Suppl 8):1–151

    Google Scholar 

  • Caspersson T, Zech L, Johansson C (1970) Differential banding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60:315–319

    Article  CAS  PubMed  Google Scholar 

  • Darlington CD (1942) Chromosome chemistry and gene action. Nature 147:66–69

    Article  Google Scholar 

  • Federoff N, Botstein D (1992) The dynamic genome. Barbara McClinktock’s ideas in the century of genetics. Cold spring Harbor Laboratory, Plainview

    Google Scholar 

  • Flemming W (1879) Beitraege zur Kenntniss die Zelle und Lebenserscheinungenhrer. Theil II. Arch Mikrosk Anat 18:151–258

    Article  Google Scholar 

  • Flemming W (1898) Ueber die Chromosomenzahl beim Menschen. Anat Anz 14:171–174

    Google Scholar 

  • Graves JAM, Disteche CM, Toder R (1998) Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet Cell Genet 80:94–103

    Article  CAS  PubMed  Google Scholar 

  • Hamerton JL (1971) Human cytogenetics, vol II. Academic, New York, p 65

    Book  Google Scholar 

  • Harris H (1995) The cells of the body. A history of somatic cell genetics. Cold Spring Harbor Laboratory, Plainview

    Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Bot 69:762–818

    Google Scholar 

  • Heitz E (1935) Chromosomenstruktur und Gne. Z inductive Abstammungs- und Verebungslehre (now Mol Gen Genet) 70:402–447

    Google Scholar 

  • Heng HHQ, Squire J, Tsui LC (1992) High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A 89:9509–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idziak D, Betekhtin A, Wolny E, Lesniewska K, Wright J, Febrer M, Bevan MW, Jenkins G, Hasterok R (2011) Painting the chromosomes of Brachpodium – current status and future prospects. Chromosoma 120:469–479

    Article  PubMed  PubMed Central  Google Scholar 

  • ISCN (1995) An international system for human cytogenetic nomenclature. In: Mitelman F (ed) Karger, Basel

    Google Scholar 

  • Jacobs PA, Baikie AG, Court Brown WM (1959) Evidence for existence of a human “superfemale”. Lancet ii:423–425

    Article  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkle D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  • Kennard ML (2011) Engineered mammalian chromosomes in cellular protein production. Future prospects. Methods Mol Biol 738:217–238

    Article  CAS  PubMed  Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A 78:6633–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci U S A 70:3395–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci 248:1721–1722

    CAS  Google Scholar 

  • Lewin B (1997) Genes VI. Oxford University Press, Oxford

    Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234

    Article  CAS  PubMed  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  • Makino S (1975) Human chromosomes. Lgaku Shoin, Tokyo

    Google Scholar 

  • Miller OJ (1995) The fifties and the renaissance in human and mammalian cytogenetics. Genetics 139:489–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller OJ, Therman E (2001) Human chromosomes. Springer Verlag, New York

    Book  Google Scholar 

  • Montgomery TH (1901) A study of the chromosome of the germ cells of metazoan. Trans Am Philos Soc 20:154–236

    Article  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Heidelberg

    Book  Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci USA 64:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5:17–21

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Straume T, Gray J (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A 89:1388–1392

    Article  Google Scholar 

  • Rudkin GT, Stollar BD (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265:472–473

    Article  CAS  PubMed  Google Scholar 

  • Schrock E, du Manoir S, Veldman T, Schoell B, Weinberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  CAS  PubMed  Google Scholar 

  • Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner CT, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosome Cancer 20:399–407

    Article  CAS  Google Scholar 

  • Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Strachan T, Read AP (1996) Human molecular genetics. Wiley-Liss, New York

    Google Scholar 

  • Sutton W (1902) The chromosomes in heredity. Biol Bull 4:231–248

    Article  Google Scholar 

  • Tijo JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6

    Article  Google Scholar 

  • Von Hansemann D (1891) Ueber pathologische Mitosen. Virchow’s Arch Path Anat Etc 123:356–370

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953a) Molecular structure of nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953b) General implication of the structure of the deoxyribonucleic acid. Nature 171(4361):964–967

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rauf Shakoori .

Editor information

Editors and Affiliations

Glossary

Artificial chromosomes

These are synthetic chromosomes which have fragments of DNA integrated into a host chromosome. These chromosomes are useful in cloning large fragments of DNA.

Chromosome painting

It is a term used to describe the direct visualization of specific chromosomes or parts of chromosomes in metaphase spreads and in interphase nuclei, through hybridization with fluorescently labeled chromosome-specific DNA probes.

Engineered chromosomes

These are the chromosomes which have a large transgene carrying capacity, are non-integrating, and stably express in the eukaryotic cells

Human artificial chromosome

Human artificial chromosome (HAC) is a microchromosome that can act as a new chromosome in a population of human cells. That is, instead of 46 chromosomes, the cell could have 47 with the 47th being very small, roughly 6–10 Mb in size instead of 50–250 Mb for natural chromosomes, and able to carry new genes introduced by researchers. HAC contains minimum human DNA elements such as telomere and centromere which are required for maintenance of chromosomal function.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Shakoori, A.R. (2017). Introduction to Chromosome. In: Bhat, T., Wani, A. (eds) Chromosome Structure and Aberrations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3673-3_1

Download citation

Publish with us

Policies and ethics