Skip to main content
Log in

Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

With respect to history, plants have provided an ideal system for cytogenetical analysis of the synaptonemal complex (SC). However, until recently, the identification of the genes that encode the SC in plants has proved elusive. In recent years, Arabidopsis thaliana was developed as a model system for plant meiosis research. As a result, there was substantial progress in the isolation of meiotic genes and this has recently led to the isolation of the first plant SC gene, ZYP1. The ZYP1 gene encodes a transverse filament (TF) protein that is predicted to have structural similarity to TF proteins found in other organisms. Analysis of plants deficient in ZYP1 expression has provided important insights into the function of the SC in plants. Loss of ZYP1 has only a limited effect on the overall level of recombination. However, it is associated with extensive nonhomologous recombination leading to multivalent formation at metaphase I. This phenomenon was not previously reported in other organisms. It is important to note that cytological analysis of the ZYP1 deficient lines indicates that SC formation is not required for the imposition of crossover interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albini SM (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5:665–672

    Article  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Anderson LK, Stack SM, Todd RJ, Ellis RP (1994) A monoclonal antibody to lateral element proteins in synaptonemal complexes of Lilium longiflorum. Chromosoma 103:357–367

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Armstrong SJ, Jones GH (2003) Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J Exp Bot 54:1–10

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Franklin FCH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    PubMed  CAS  Google Scholar 

  • Beadle GW (1930) Genetic and cytological studies of a Mendelian asynaptic in Zea mays. Cornell Agric Exp Sta Mem 129:175–189

    Google Scholar 

  • Beadle GW (1933) Further studies of asynaptic maize. Cytologia 4:269–287

    Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris 316:1194–1199

    CAS  Google Scholar 

  • Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear-complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Bishop DK, Park D, Xu LZ, Kleckner N (1992) Dmc1 a meiosis-specific yeast homolog of Escherichia coli recA required for recombination, synaptonemal complex formation and cell-cycle progression. Cell 69:439–456

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov YF, Dadashev SY, Grishaeva TM (2003) In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms. In Silico Biol 3:173–185

    PubMed  CAS  Google Scholar 

  • Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:9–15

    Article  Google Scholar 

  • Chen C, Zhang W, Timofejeva L, Gerardin Y, Ma H (2005) The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. Plant J 43:321–334

    Article  PubMed  CAS  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–89

    Article  PubMed  CAS  Google Scholar 

  • Doutriaux MP, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257:283–291

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW (1956) The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Cell Biol 2:403–406

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Fransz P, Armstrong S, Alonso-blanco C, Fischer TC, Torres-ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    Article  PubMed  CAS  Google Scholar 

  • Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802

    Article  PubMed  CAS  Google Scholar 

  • Gillies CB (1975) Synaptonemal complex and chromosome structure. Annu Rev Genet 9:91–109

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya IN, Mashnenkov AS (1976) Genetic control of meiosis: II. A desynaptic mutant in maize induced by N-nitroso-N-methyl-urea. Genetika 12:7–14

    Google Scholar 

  • Golubovskaya IN, Grebennikova ZK, Auger DL, Sheridan WF (1997) The maize desynaptic1 mutation disrupts meiotic chromosome synapsis. Dev Genet 21:146–159

    Article  Google Scholar 

  • Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    PubMed  CAS  Google Scholar 

  • Havekes FW, de Jong JH, Heyting C, Ramanna MS (1994) Synapsis and chiasma formation in four meiotic mutants of tomato (Lycopersicon esculentum). Chromosome Res 2:315–325

    Article  PubMed  CAS  Google Scholar 

  • Heyting C (1996) Synaptonemal complexes: structure and function. Curr Opin Cell Biol 8:389–396

    Article  PubMed  CAS  Google Scholar 

  • Heyting C, Moens PB, van Raamsdonk W, Dietrich AJ, Vink AC, Redeker EJ (1987) Identification of two major components of the lateral elements of synaptonemal complexes of the rat. Eur J Cell Biol 43:148–154

    PubMed  CAS  Google Scholar 

  • Heyting C, Dietrich AJ, Moens PB, Dettmers RJ, Offenberg HH, Redeker EJ, Vink AC (1989) Synaptonemal complex proteins. Genome 31:81–87

    PubMed  CAS  Google Scholar 

  • Higgins JD, Armstrong SJ, Franklin FCH, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    Article  PubMed  CAS  Google Scholar 

  • Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183

    Article  PubMed  CAS  Google Scholar 

  • Jenkins G, Okumus A (1992) Indiscriminate synapsis in achiasmate Allium fistulosum L. (Liliaceae). J Cell Sci 103:415–422

    Google Scholar 

  • Jones GH (1984) The control of chiasma distribution. SEB Symp 38:293–320

    CAS  Google Scholar 

  • Klimyuk VI, Jones JDG (1997) AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J 11:1–14

    Article  PubMed  CAS  Google Scholar 

  • Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C (1994) The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 14:1137–1146

    PubMed  CAS  Google Scholar 

  • Loidl J (1994) Cytological aspects of meiotic recombination. Experientia 50:285–294

    Article  PubMed  CAS  Google Scholar 

  • MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP, Paredes AM, Riess RW (1991) The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome 34:879–887

    PubMed  CAS  Google Scholar 

  • Martinez M, Naranjo T, Cuadrado C, Romero C (2001a) The synaptic behaviour of Triticum turgidum with variable doses of the PH1 locus. Theor Appl Genet 102:751–758

    Article  CAS  Google Scholar 

  • Martinez M, Cuñado N, Carcelén N, Romero C (2001b) The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat. Theor Appl Genet 103:398–405

    Article  CAS  Google Scholar 

  • Martinez M, Cuadrado C, Laurie DA, Romero C (2005) Synaptic behaviour of hexaploid wheat haploids with different effectiveness of the diploidizing mechanism. Cytogenet Genome Res 109:210–214

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G (2003) Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J 36:21–29

    Article  PubMed  CAS  Google Scholar 

  • Mello-Sampayo T, Canas AP (1973) Suppressors of meiotic chromosome pairing in common wheat. Proceedings of the 4th international wheat genetics symposium, pp 709–713

  • Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogué F, Doutriaux M, Horlow C, Grelon G (2005) Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3, whereas the other one is not. Curr Biol 15:692–701

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen RLJ, Offenberg HH, Dietrich AJJ, Riesewijk A, van Iersel M, Heyting C (1992) A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11:5091–5100

    PubMed  CAS  Google Scholar 

  • Meuwissen RLJ, Meerts I, Hoovers JMN, Leschot NJ, Heyting C (1997) Human synaptonemal complex protein 1 (SCP1): isolation and characterization of the cDNA and chromosomal localization of the gene. Genomics 39:377–384

    Article  PubMed  CAS  Google Scholar 

  • Moens P, Heyting C, Dietrich A, van Raamsdonk W, Chen Q (1987) Synaptonemal complex antigen location and conservation. J Cell Biol 105:93–103

    Article  PubMed  CAS  Google Scholar 

  • Moses MJ (1956) Chromosomal structures in crayfish spermatocytes. J Cell Biol 2:215–218

    Article  CAS  Google Scholar 

  • Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C (2000) Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod 12:209–218

    Article  Google Scholar 

  • Nelson OE, Clary GB (1952) Genetic control of semisterility in maize. J Hered 43:205–210

    Google Scholar 

  • Offenberg HH, Dietrich AJ, Heyting C (1991) Tissue distribution of two major components of synaptonemal complexes of the rat. Chromosoma 101:83–91

    Article  PubMed  CAS  Google Scholar 

  • Offenberg H, Schalk J, Meuwissen R, van Aalderen M, Kester H, Dietrich A, Heyting C (1998) SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 26:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Iwaikawa Y, Toshiyuki K, Hotta Y, Tabata S (1992) Isolation of synaptonemal complexes from lily microsporocytes. Plant Sci 86:115–124

    Article  Google Scholar 

  • Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–3143

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303:89–92

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516

    Article  PubMed  CAS  Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FCH, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:551–559

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Moran E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FCH (2005) A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res 109:181–189

    Article  PubMed  CAS  Google Scholar 

  • Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. Proc Tenth Int Cong Genet 2:258–259

    Google Scholar 

  • Smith A, Benavente R (1992) Identification of a structural protein component of rat synaptonemal complexes. Exp Cell Res 198:291–297

    Article  PubMed  CAS  Google Scholar 

  • Sosnikhina SP, Mikhailova EI, Tikholiz OA, Priyatkina SN, Smirnov VG, Dadashev SY, Kolomiets OL, Bogdanov YF (2005) Meiotic mutations in rye Secale cereale L. Cytogenet Genome Res 109:215–220

    Article  PubMed  CAS  Google Scholar 

  • Storlazzi A, Xu L, Schwacha A, Kleckner N (1996) Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Philipp Numis Monogr 93:9043–9048

    CAS  Google Scholar 

  • Suzuki M (1989) SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol 207:61–84

    Article  PubMed  CAS  Google Scholar 

  • Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292

    Article  PubMed  CAS  Google Scholar 

  • Sym M, Engebrecht JA, Roeder GS (1993) ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378

    Article  PubMed  CAS  Google Scholar 

  • Timopheeva LP, Golubovskaya IN (1991) A new type of desynaptic gene in maize revealed by the micro-spreading method of synaptonemal complexes. Cytologia 33:3–8

    Google Scholar 

  • Tsubouchi T, Roeder GS (2005) A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308:870–873

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–411

    Article  Google Scholar 

  • Westergaard M, von Wettstein D (1972) The synaptonemal complex. Annu Rev Genet 6:71–110

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Juan Luis Santos and Dr. Nieves Cuñado (Facultad de CC Biologicas, Universidad Complutense de Madrid, Spain) for kindly communicating their unpublished observations of the localization of ZYP1 in diploid wheat and providing the image used in Fig. 2. Work in the FCHF/GHJ laboratory is funded by the Biotechnology and Biological Sciences Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chris H. Franklin.

Additional information

Communicated by R. Benavente

The synaptonemal complex—50 years

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, K., Sanchez-Moran, E., Higgins, J.D. et al. Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma 115, 212–219 (2006). https://doi.org/10.1007/s00412-005-0042-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0042-4

Keywords

Navigation